Journal of Applied Mathematics

Adaptive Synchronization and Antisynchronization of a Hyperchaotic Complex Chen System with Unknown Parameters Based on Passive Control

Xiaobing Zhou, Lianglin Xiong, Weiwei Cai, and Xiaomei Cai

Full-text: Open access

Abstract

This paper investigates the synchronization and antisynchronization problems of a hyperchaotic complex Chen system with unknown parameters based on the properties of a passive system. The essential conditions are derived under which the synchronization or antisynchronization error dynamical system could be equivalent to a passive system and be globally asymptotically stabilized at a zero equilibrium point via smooth state feedback. Corresponding parameter estimation update laws are obtained to estimate the unknown parameters as well. Numerical simulations verify the effectiveness of the theoretical analysis.

Article information

Source
J. Appl. Math., Volume 2013 (2013), Article ID 845253, 8 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394807923

Digital Object Identifier
doi:10.1155/2013/845253

Mathematical Reviews number (MathSciNet)
MR3039732

Zentralblatt MATH identifier
1266.93087

Citation

Zhou, Xiaobing; Xiong, Lianglin; Cai, Weiwei; Cai, Xiaomei. Adaptive Synchronization and Antisynchronization of a Hyperchaotic Complex Chen System with Unknown Parameters Based on Passive Control. J. Appl. Math. 2013 (2013), Article ID 845253, 8 pages. doi:10.1155/2013/845253. https://projecteuclid.org/euclid.jam/1394807923


Export citation