Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2013, Special Issue (2013), Article ID 139123, 8 pages.

New Hybrid Steepest Descent Algorithms for Equilibrium Problem and Infinitely Many Strict Pseudo-Contractions in Hilbert Spaces

Peichao Duan

Full-text: Open access

Abstract

We propose an explicit iterative scheme for finding a common element of the set of fixed points of infinitely many strict pseudo-contractive mappings and the set of solutions of an equilibrium problem by the general iterative method, which solves the variational inequality. In the setting of real Hilbert spaces, strong convergence theorems are proved. The results presented in this paper improve and extend the corresponding results reported by some authors recently. Furthermore, two numerical examples are given to demonstrate the effectiveness of our iterative scheme.

Article information

Source
J. Appl. Math., Volume 2013, Special Issue (2013), Article ID 139123, 8 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394807734

Digital Object Identifier
doi:10.1155/2013/139123

Mathematical Reviews number (MathSciNet)
MR3094969

Zentralblatt MATH identifier
06950531

Citation

Duan, Peichao. New Hybrid Steepest Descent Algorithms for Equilibrium Problem and Infinitely Many Strict Pseudo-Contractions in Hilbert Spaces. J. Appl. Math. 2013, Special Issue (2013), Article ID 139123, 8 pages. doi:10.1155/2013/139123. https://projecteuclid.org/euclid.jam/1394807734


Export citation

References

  • F. E. Browder and W. V. Petryshyn, “Construction of fixed points of nonlinear mappings in Hilbert space,” Journal of Mathematical Analysis and Applications, vol. 20, pp. 197–228, 1967.
  • E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.
  • S. Chang, H. W. Joseph Lee, and C. K. Chan, “A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 9, pp. 3307–3319, 2009.
  • Y. Liu, “A general iterative method for equilibrium problems and strict pseudo-contractions in Hilbert spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 10, pp. 4852–4861, 2009.
  • G. Marino and H.-K. Xu, “A general iterative method for nonexpansive mappings in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 43–52, 2006.
  • S. Takahashi and W. Takahashi, “Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 3, pp. 1025–1033, 2008.
  • P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117–136, 2005.
  • W. R. Mann, “Mean value methods in iteration,” Proceedings of the American Mathematical Society, vol. 4, pp. 506–510, 1953.
  • K. Shimoji and W. Takahashi, “Strong convergence to common fixed points of infinite nonexpansive mappings and applications,” Taiwanese Journal of Mathematics, vol. 5, no. 2, pp. 387–404, 2001.
  • G. L. Acedo and H.-K. Xu, “Iterative methods for strict pseudo-contractions in Hilbert spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 7, pp. 2258–2271, 2007.
  • M. Tian, “A general iterative algorithm for nonexpansive mappings in Hilbert spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 3, pp. 689–694, 2010.
  • I. Yamada, “The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings,” in Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000), vol. 8 of Studies in Computational Mathematics, pp. 473–504, North-Holland, Amsterdam, The Netherlands, 2001.
  • S. Wang, “A general iterative method for obtaining an infinite family of strictly pseudo-contractive mappings in Hilbert spaces,” Applied Mathematics Letters, vol. 24, no. 6, pp. 901–907, 2011.
  • S. N. He and W. W. Sun, “New hybrid steepest descent algorithms for variational inequalities over the common fixed points set of infinite nonexpansive mappings,” WSEAS Transactions on Mathematics, vol. 11, pp. 83–92, 2012.
  • P. Duan and A. Wang, “General iterative methods for equilibrium problems and infinitely many strict pseudocontractions in Hilbert spaces,” Journal of Applied Mathematics, vol. 2012, Article ID 602513, 17 pages, 2012.
  • H. K. Xu, “An iterative approach to quadratic optimization,” Journal of Optimization Theory and Applications, vol. 116, no. 3, pp. 659–678, 2003.
  • Y. Yao, M. A. Noor, and Y.-C. Liou, “On iterative methods for equilibrium problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 1, pp. 497–509, 2009.
  • L.-C. Ceng and J.-C. Yao, “Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings,” Applied Mathematics and Computation, vol. 198, no. 2, pp. 729–741, 2008.
  • T. Suzuki, “Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications, vol. 305, no. 1, pp. 227–239, 2005.
  • B. E. Rhoades, “Comments on two fixed point iteration methods,” Journal of Mathematical Analysis and Applications, vol. 56, no. 3, pp. 741–750, 1976.