Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2013, Special Issue (2013), Article ID 848324, 10 pages.

Application of D-CRDM Method in Columnar Jointed Basalts Failure Analysis

Changyu Jin, Xiating Feng, Chengxiang Yang, Dan Fang, Jiangpo Liu, and Shuai Xu

Full-text: Open access

Abstract

Columnar jointed basalt is a type of joint rock mass formed by the combined cutting effect of original joints and aphanitic microcracks. After excavation unloading, such rock mass manifested distinct mechanical properties including discontinuity, anisotropy, and proneness of cracking. On the basis of former research findings, this paper establishes a D-CRDM method applicable to the analysis of columnar jointed basalt, which not only integrates discrete element and equivalent finite-element methods, but also takes into account the coupling effect of original joints and aphanitic microcracks. From the comparative study of field monitoring data and strain softening constitutive model calculated results, it can be found that this method may well be used for the simulation of mechanical properties of columnar jointed basalts and the determination of rock failure mechanism and failure modes, thus providing references for the selection of supporting measures for this type of rock mass.

Article information

Source
J. Appl. Math., Volume 2013, Special Issue (2013), Article ID 848324, 10 pages.

Dates
First available in Project Euclid: 14 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1394807583

Digital Object Identifier
doi:10.1155/2013/848324

Citation

Jin, Changyu; Feng, Xiating; Yang, Chengxiang; Fang, Dan; Liu, Jiangpo; Xu, Shuai. Application of D-CRDM Method in Columnar Jointed Basalts Failure Analysis. J. Appl. Math. 2013, Special Issue (2013), Article ID 848324, 10 pages. doi:10.1155/2013/848324. https://projecteuclid.org/euclid.jam/1394807583


Export citation

References

  • D. X. Yan, W. Y. Xu, W. T. Zheng, W. Wang, A. C. Shi, and G. Y. Wu, “Mechanical characteristics of columnar jointed rock at dam base of Baihetan hydropower station,” Journal of Central South University of Technology, vol. 18, no. 6, pp. 2157–2162, 2011.
  • Y. Wei, M. Xu, W. Wang et al., “Feasibility of columnar jointed basalt used for high-arch dam foundation,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 3, pp. 461–468, 2011.
  • S.-J. Di, W.-Y. Xu, Y. Ning, W. Wang, and G.-Y. Wu, “Macro-mechanical properties of columnar jointed basaltic rock mas-ses,” Journal of Central South University of Technology, vol. 18, no. 6, pp. 2143–2149, 2011.
  • W. Zhang, J.-P. Chen, C. Liu, R. Huang, M. Li, and Y. Zhang, “Determination of geometrical and structural representative volume elements at the Baihetan dam site,” Rock Mechanics and Rock Engineering, vol. 45, no. 3, pp. 409–419, 2012.
  • Z. Yuting, D. Xiuli, and H. Shuling, “Stability evaluation of rock blocks in jointed rock masses considering Earthquake impacts,” Disaster Advances, vol. 5, no. 4, pp. 127–132, 2012.
  • Q. Jiang, J. Zhang, and X. Feng, “Health diagnosis and functional rehabilitation for seismic-damaged tunnel suffered from the Wenchuan earthquake: a case study,” Disaster Advances, vol. 5, no. 4, pp. 738–743, 2012.
  • M. Sagong, D. Park, J. Yoo, and J. S. Lee, “Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression,” International Journal of Rock Mechanics and Mining Sciences, vol. 48, no. 7, pp. 1055–1067, 2011.
  • M. Singh and B. Singh, “Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks,” International Journal of Rock Mechanics and Mining Sciences, vol. 51, pp. 43–52, 2012.
  • Y. Ren and H. Yang, “Equivalent analysis of ortho gonalvisco elastic joint edrockvia an adaptive algorithm in time domain,” Finite Elements in Analysis and Design, vol. 46, no. 10, pp. 875–888, 2010.
  • S. Maghous, D. Bernaud, J. Fréard, and D. Garnier, “Elastoplastic behavior of jointed rock masses as homogenized media and finite element analysis,” International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 8, pp. 1273–1286, 2008.
  • W. G. Pariseau, “An equivalent plasticity theory for jointed rock masses,” International Journal of Rock Mechanics and Mining Sciences, vol. 36, no. 7, pp. 907–918, 1999.
  • Z. Yingren, S. Zhujiang, and G. Xiaonan, The Principles of Geotechnical Plastic Mechanics, China Architecture and Building Press, Beijing, China, 2002.