Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2012, Special Issue (2012), Article ID 165452, 12 pages.

On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations

Diyashvir K. R. Babajee, Alicia Cordero, Fazlollah Soleymani, and Juan R. Torregrosa

Full-text: Open access

Abstract

This paper focuses on solving systems of nonlinear equations numerically. We propose an efficient iterative scheme including two steps and fourth order of convergence. The proposed method does not require the evaluation of second or higher order Frechet derivatives per iteration to proceed and reach fourth order of convergence. Finally, numerical results illustrate the efficiency of the method.

Article information

Source
J. Appl. Math., Volume 2012, Special Issue (2012), Article ID 165452, 12 pages.

Dates
First available in Project Euclid: 3 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.jam/1357177648

Digital Object Identifier
doi:10.1155/2012/165452

Mathematical Reviews number (MathSciNet)
MR2997244

Zentralblatt MATH identifier
1268.65072

Citation

Babajee, Diyashvir K. R.; Cordero, Alicia; Soleymani, Fazlollah; Torregrosa, Juan R. On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. J. Appl. Math. 2012, Special Issue (2012), Article ID 165452, 12 pages. doi:10.1155/2012/165452. https://projecteuclid.org/euclid.jam/1357177648


Export citation

References

  • D. K. R. Babajee, M. Z. Dauhoo, M. T. Darvishi, A. Karami, and A. Barati, “Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations,” Journal of Computational and Applied Mathematics, vol. 233, no. 8, pp. 2002–2012, 2010.
  • M. T. Darvishi and A. Barati, “A fourth-order method from quadrature formulae to solve systems of nonlinear equations,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 257–261, 2007.
  • J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández, and M. A. Salanova, “A biparametric family of inverse-free multipoint iterations,” Computational & Applied Mathematics, vol. 19, no. 1, pp. 109–124, 2000.
  • J. F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, Englewood Cliffs, NJ, USA, 1964.
  • F. Soleymani, S. K. Khattri, and S. Karimi Vanani, “Two new classes of optimal Jarratt-type fourth-order methods,” Applied Mathematics Letters, vol. 25, no. 5, pp. 847–853, 2012.
  • A. Cordero, J. L. Hueso, E. Martínez, and J. R. Torregrosa, “Accelerated methods for order $2p$ for systems of nonlinear equations,” Journal of Computational and Applied Mathematics, vol. 233, no. 10, pp. 2696–2702, 2010.
  • B. H. Dayton, T.-Y. Li, and Z. Zeng, “Multiple zeros of nonlinear systems,” Mathematics of Computation, vol. 80, no. 276, pp. 2143–2168, 2011.
  • W. Haijun, “New third-order method for solving systems of nonlinear equations,” Numerical Algorithms, vol. 50, no. 3, pp. 271–282, 2009.
  • M. A. Noor, M. Waseem, K. I. Noor, and E. Al-Said, “Variational iteration techniquečommentComment on ref. [9?]: Please update the information of this reference, if possible. for solving a system of nonlinear equations,” Optimization Letters. In press.
  • A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Springer, New York, NY, USA, 2nd edition, 2003.
  • M. Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi, “An efficient solver for systems of nonlinear equations with singular Jacobian via diagonal updating,” Applied Mathematical Sciences, vol. 4, no. 69–72, pp. 3403–3412, 2010.
  • M. Frontini and E. Sormani, “Third-order methods from quadrature formulae for solving systems of nonlinear equations,” Applied Mathematics and Computation, vol. 149, no. 3, pp. 771–782, 2004.
  • D. K. R. Babajee, Analysis of higher order variants of Newton's method and their applications to differential and integral equations and in ocean acidification [Ph.D. thesis], University of Mauritius, 2010.
  • A. Cordero, J. L. Hueso, E. Martínez, and J. R. Torregrosa, “A modified Newton-Jarratt's composition,” Numerical Algorithms, vol. 55, no. 1, pp. 87–99, 2010.
  • A. Cordero and J. R. Torregrosa, “Variants of Newton's method using fifth-order quadrature formulas,” Applied Mathematics and Computation, vol. 190, no. 1, pp. 686–698, 2007.