Journal of Applied Mathematics

Stable Zero Lagrange Duality for DC Conic Programming

D. H. Fang

Full-text: Open access

Abstract

We consider the problems of minimizing a DC function under a cone-convex constraint and a set constraint. By using the infimal convolution of the conjugate functions, we present a new constraint qualification which completely characterizes the Farkas-type lemma and the stable zero Lagrange duality gap property for DC conical programming problems in locally convex spaces.

Article information

Source
J. Appl. Math., Volume 2012 (2012), Article ID 606457, 17 pages.

Dates
First available in Project Euclid: 2 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.jam/1357153597

Digital Object Identifier
doi:10.1155/2012/606457

Mathematical Reviews number (MathSciNet)
MR3000276

Zentralblatt MATH identifier
1271.90063

Citation

Fang, D. H. Stable Zero Lagrange Duality for DC Conic Programming. J. Appl. Math. 2012 (2012), Article ID 606457, 17 pages. doi:10.1155/2012/606457. https://projecteuclid.org/euclid.jam/1357153597


Export citation