Journal of Applied Mathematics

The Hamiltonian System Method for the Stress Analysis in Axisymmetric Problems of Viscoelastic Solids

W. X. Zhang, Y. Bai, and F. Yuan

Full-text: Open access

Abstract

With the use of the Laplace integral transformation and state space formalism, the classical axial symmetric quasistatic problem of viscoelastic solids is discussed. By employing the method of separation of variables, the governing equations under Hamiltonian system are established, and hence, general solutions including the zero eigensolutions and nonzero eigensolutions are obtained analytically. Due to the completeness property of the general solutions, their linear combinations can describe various boundary conditions. Simply by applying the adjoint relationships of the symplectic orthogonality, the eigensolution expansion method for boundary condition problems is given. In the numerical examples, stress distributions of a circular cylinder under the end and lateral boundary conditions are obtained. The results exhibit that stress concentrations appear due to the displacement constraints, and that the effects are seriously confined near the constraints, decreasing rapidly with the distance from the boundary.

Article information

Source
J. Appl. Math., Volume 2012 (2012), Article ID 945238, 14 pages.

Dates
First available in Project Euclid: 2 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.jam/1357153516

Digital Object Identifier
doi:10.1155/2012/945238

Mathematical Reviews number (MathSciNet)
MR2979461

Zentralblatt MATH identifier
1251.74038

Citation

Zhang, W. X.; Bai, Y.; Yuan, F. The Hamiltonian System Method for the Stress Analysis in Axisymmetric Problems of Viscoelastic Solids. J. Appl. Math. 2012 (2012), Article ID 945238, 14 pages. doi:10.1155/2012/945238. https://projecteuclid.org/euclid.jam/1357153516


Export citation