Journal of Applied Mathematics

Traveling Wave Solutions of the Nonlinear ( 3 + 1 ) -Dimensional Kadomtsev-Petviashvili Equation Using the Two Variables ( G / G , 1 / G ) -Expansion Method

E. M. E. Zayed, S. A. Hoda Ibrahim, and M. A. M. Abdelaziz

Full-text: Open access

Abstract

The two variables ( G / G , 1 / G ) -expansion method is proposed in this paper to construct new exact traveling wave solutions with parameters of the nonlinear ( 3 + 1 ) -dimensional Kadomtsev-Petviashvili equation. This method can be considered as an extension of the basic ( G / G ) -expansion method obtained recently by Wang et al. When the parameters are replaced by special values, the well-known solitary wave solutions and the trigonometric periodic solutions of this equation were rediscovered from the traveling waves.

Article information

Source
J. Appl. Math., Volume 2012 (2012), Article ID 560531, 8 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.jam/1355495279

Digital Object Identifier
doi:10.1155/2012/560531

Mathematical Reviews number (MathSciNet)
MR2965716

Zentralblatt MATH identifier
1251.65150

Citation

Zayed, E. M. E.; Hoda Ibrahim, S. A.; Abdelaziz, M. A. M. Traveling Wave Solutions of the Nonlinear $(3+1)$ -Dimensional Kadomtsev-Petviashvili Equation Using the Two Variables $({G}^{\prime }/G,1/G)$ -Expansion Method. J. Appl. Math. 2012 (2012), Article ID 560531, 8 pages. doi:10.1155/2012/560531. https://projecteuclid.org/euclid.jam/1355495279


Export citation