Journal of Applied Mathematics

Bacterial Foraging-Tabu Search Metaheuristics for Identification of Nonlinear Friction Model

Nuapett Sarasiri, Kittiwong Suthamno, and Sarawut Sujitjorn

Full-text: Open access

Abstract

This paper proposes new metaheuristic algorithms for an identification problem of nonlinear friction model. The proposed cooperative algorithms are formed from the bacterial foraging optimization (BFO) algorithm and the tabu search (TS). The paper reports the search comparison studies of the BFO, the TS, the genetic algorithm (GA), and the proposed metaheuristics. Search performances are assessed by using surface optimization problems. The proposed algorithms show superiority among them. A real-world identification problem of the Stribeck friction model parameters is presented. Experimental setup and results are elaborated.

Article information

Source
J. Appl. Math., Volume 2012 (2012), Article ID 238563, 23 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.jam/1355495246

Digital Object Identifier
doi:10.1155/2012/238563

Mathematical Reviews number (MathSciNet)
MR2959987

Zentralblatt MATH identifier
1251.74026

Citation

Sarasiri, Nuapett; Suthamno, Kittiwong; Sujitjorn, Sarawut. Bacterial Foraging-Tabu Search Metaheuristics for Identification of Nonlinear Friction Model. J. Appl. Math. 2012 (2012), Article ID 238563, 23 pages. doi:10.1155/2012/238563. https://projecteuclid.org/euclid.jam/1355495246


Export citation