Journal of Applied Mathematics

Analytical Solutions for Corrosion-Induced Cohesive Concrete Cracking

Hua-Peng Chen and Nan Xiao

Full-text: Open access


The paper presents a new analytical model to study the evolution of radial cracking around a corroding steel reinforcement bar embedded in concrete. The concrete cover for the corroding rebar is modelled as a thick-walled cylinder subject to axisymmetrical displacement constraint at the internal boundary generated by expansive corrosion products. A bilinear softening curve reflecting realistic concrete property, together with the crack band theory for concrete fracture, is applied to model the residual tensile stress in the cracked concrete. A governing equation for directly solving the crack width in cover concrete is established for the proposed analytical model. Closed-form solutions for crack width are then obtained at various stages during the evolution of cracking in cover concrete. The propagation of crack front with corrosion progress is studied, and the time to cracking on concrete cover surface is predicted. Mechanical parameters of the model including residual tensile strength, reduced tensile stiffness, and radial pressure at the bond interface are investigated during the evolution of cover concrete cracking. Finally, the analytical predictions are examined by comparing with the published experimental data, and mechanical parameters are analysed with the progress of reinforcement corrosion and through the concrete cover.

Article information

J. Appl. Math., Volume 2012 (2012), Article ID 769132, 25 pages.

First available in Project Euclid: 14 December 2012

Permanent link to this document

Digital Object Identifier


Chen, Hua-Peng; Xiao, Nan. Analytical Solutions for Corrosion-Induced Cohesive Concrete Cracking. J. Appl. Math. 2012 (2012), Article ID 769132, 25 pages. doi:10.1155/2012/769132.

Export citation