Journal of Applied Mathematics

The quantum spheres and their embedding into quantum Minkowski space-time

M. Lagraa

Full-text: Open access


We recast the Podleś spheres in the noncommutative physics context by showing that they can be regarded as slices along the time coordinate of the different regions of the quantum Minkowski space-time. The investigation of the transformations of the quantum sphere states under the left coaction of the SOq(3) group leads to a decomposition of the transformed Hilbert space states in terms of orthogonal subspaces exhibiting the periodicity of the quantum sphere states.

Article information

J. Appl. Math., Volume 2, Number 7 (2002), 315-335.

First available in Project Euclid: 30 March 2003

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 16W30 22E43: Structure and representation of the Lorentz group
Secondary: 20G45: Applications to physics 81R05: Finite-dimensional groups and algebras motivated by physics and their representations [See also 20C35, 22E70]


Lagraa, M. The quantum spheres and their embedding into quantum Minkowski space-time. J. Appl. Math. 2 (2002), no. 7, 315--335. doi:10.1155/S1110757X0211103X.

Export citation


  • T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces, Comm. Math. Phys. 157 (1993), no. 3, 591–638, Erratum: Comm. Math. Phys. 167 (1995), no. 1, 235. \CMP1+316+5061 316 506
  • C.-S. Chu, P.-M. Ho, and B. Zumino, Some complex quantum manifolds and their geometry, Quantum Fields and Quantum Space Time (Cargèse, 1996), NATO Advanced Science Institutes Series B: Physics, vol. 364, Plenum, New York, 1997, pp. 281–322.
  • H. Grosse, J. Madore, and H. Steinacker, Field theory on the $q$-deformed fuzzy sphere II: Quantization, preprint, 2001, hep-th/0103164.
  • ––––, Field theory on the $q$-deformed fuzzy sphere. I, J. Geom. Phys. 38 (2001), no. 3-4, 308–342. \CMP1+829+0461 829 046
  • P. M. Hajac, Strong connections on quantum principal bundles, Comm. Math. Phys. 182 (1996), no. 3, 579–617.
  • P. M. Hajac and S. Majid, Projective module description of the $q$-monopole, Comm. Math. Phys. 206 (1999), no. 2, 247–264.
  • M. Lagraa, The boosts in the noncommutative special relativity, preprint, 2001,
  • ––––, Measurability of observables in the noncommutative special relativity, preprint, 2001,
  • ––––, On the quantum Lorentz group, J. Geom. Phys. 34 (2000), no. 3-4, 206–225.
  • A. Pinzul and A. Stern, Dirac operator on the quantum sphere, Phys. Lett. B 512 (2001), no. 1-2, 217–224. \CMP1+851+9901 851 990
  • P. Podleś, Quantum spheres, Lett. Math. Phys. 14 (1987), no. 3, 193–202.
  • ––––, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum ${\rm {S}{U}}(2)$ and ${\rm {S}{O}}(3)$ groups, Comm. Math. Phys. 170 (1995), no. 1, 1–20.