Journal of Applied Mathematics

Quantum relativistic Toda chain

G. Pronko and Sergei Sergeev

Full-text: Open access


Investigated is the quantum relativistic periodic Toda chain, to each site of which the ultra-local Weyl algebra is associated. Weyl’s q we are considering here is restricted to be inside the unit circle. Quantum Lax operators of the model are intertwined by six-vertex R-matrix. Both independent Baxter’s Q-operators are constructed explicitly as seria over local Weyl generators. The operator-valued Wronskian of R-matrix. Both independent Baxter’s Qs is also calculated.

Article information

J. Appl. Math., Volume 1, Number 2 (2001), 47-68.

First available in Project Euclid: 13 March 2003

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82B23: Exactly solvable models; Bethe ansatz 37K15: Integration of completely integrable systems by inverse spectral and scattering methods


Pronko, G.; Sergeev, Sergei. Quantum relativistic Toda chain. J. Appl. Math. 1 (2001), no. 2, 47--68. doi:10.1155/S1110757X01000055.

Export citation


  • R. J. Baxter, Generalized ferroelectric model on a square lattice, Studies in Appl. Math. 50 (1971), 51–69.
  • ––––, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193–228.
  • ––––, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors, Ann. Physics 76 (1973), 1–24.
  • ––––, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model, Ann. Physics 76 (1973), 25–47.
  • ––––, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. III. Eigenvectors of the transfer matrix and Hamiltonian, Ann. Physics 76 (1973), 26–71.
  • ––––, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.
  • V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, Integrable structure of conformal field theory. II. $Q$-operator and DDV equation, Comm. Math. Phys. 190 (1997), no. 2, 247–278.
  • ––––, Integrable structure of conformal field theory. III. The Yang-Baxter relation, Comm. Math. Phys. 200 (1999), no. 2, 297–324.
  • L. D. Faddeev, Modular double of quantum group, math.QA/9912078.
  • ––––, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995), no. 3, 249–254.
  • L. D. Faddeev, R. M. Kashaev, and A. Y. Volkov, Strongly coupled quantum discrete Liouville theory I: algebraic approach and duality, abs/hep-th/0006156.
  • S. Kharchev, D. Lebedev, and M. Semenov-Tian-Shansky, Unitary representations of $U_q(\mathfrak{sl}(2,\mathbb{R}))$, the modular double, and the multiparticle $q$-deformed Toda chains,
  • A. Kundu, Generation of a quantum integrable class of discrete-time or relativistic periodic Toda chains, Phys. Lett. A 190 (1994), no. 1, 79–84.
  • V. B. Kuznetsov, M. Salerno, and E. K. Sklyanin, Quantum Bäcklund transformation for the integrable DST model, J. Phys. A 33 (2000), no. 1, 171–189, \CMP1+748+4701 748 470
  • V. B. Kuznetsov and A. V. Tsiganov, Separation of variables for the quantum relativistic Toda lattices,
  • S. Pakuliak and S. Sergeev, Relativistic Toda chain at root of unity,, 2001.
  • G. P. Pronko, On Baxter ${Q}$-operators for the Toda chain, J. Phys. A 33 (2000), no. 46, 8251–8266, \CMP1+804+2821 804 282
  • ––––, On Baxter's ${Q}$-operator for the $XXX$ spin chain, Comm. Math. Phys. 212 (2000), no. 3, 687–701. \CMP1+779+1641 779 164
  • G. P. Pronko and Y. G. Stroganov, Bethe equations “on the wrong side of the equator”, J. Phys. A 32 (1999), no. 12, 2333–2340.
  • S. N. M. Ruijsenaars, Relativistic Toda systems, Comm. Math. Phys. 133 (1990), no. 2, 217–247.
  • E. K. Sklyanin, Bäcklund transformations and Baxter's ${Q}$-operator, Integrable Systems: From Classical to Quantum, Amer. Math. Soc., Rhode Island, 2000,, pp. 227–250. \CMP1+791+8921 791 892