International Statistical Review

Analysing Your Multivariate Data as a Pictorial: A Case for Applying Biplot Methodology?

Niël J. le Roux and Sugnet Gardner

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This paper illustrates the versatility of biplot methodology when analysing multivariate data from diverse disciplines. The modern approach of Gower & Hand (1996) whereby biplots are regarded as multivariate analogues of ordinary scatter plots is utilised for extending biplot methodology introducing several novel applications. Focus is on biplot applications where the merits of principal component biplots and canonical variate analysis biplots are illustrated with data sets from higher education, the manufacturing industry, the mining industry, agriculture, finance and archaeology. It is shown how to equip biplots with quality regions, classification regions and acceptance regions; how α-bags superimposed on biplots provide a quantification of the multidimensional overlap of classes as well as enable biplots to be used with large data sets; how to use biplots for exploring multi-dimensional reality and in sophisticated classification procedures.

Article information

Source
Internat. Statist. Rev., Volume 73, Number 3 (2005), 365-387.

Dates
First available in Project Euclid: 5 December 2005

Permanent link to this document
https://projecteuclid.org/euclid.isr/1133819154

Zentralblatt MATH identifier
1107.62048

Keywords
α-bag Biplot Canonical variate analysis Classification Data visualisation Principal components Quality control

Citation

le Roux, Niël J.; Gardner, Sugnet. Analysing Your Multivariate Data as a Pictorial: A Case for Applying Biplot Methodology?. Internat. Statist. Rev. 73 (2005), no. 3, 365--387. https://projecteuclid.org/euclid.isr/1133819154


Export citation

References

  • [1] Aldrich, C., Gardner, S. & le Roux, N.J. (2004). Monitoring of metallurgical process plants by using biplots. AIChE Journal, 50, 2167-2186.
  • [2] Bothma, A., Botha, H.L. & le Roux, N.J. (2004). School results and access test results as indicators of first-year performance at university. ORiON, 20, 73-88.
  • [3] Burden, M., Gardner, S., le Roux, N.J. & Swart, J.P.J. (2001). Ou-Kaapse meubels en stinkhout-identifikasie: Moontlikhede met kanoniese veranderlike-analise en bistippings. SA J. Cultural History, 15, 50-73.
  • [4] Chambers, J.M., Cleveland, S., Kleiner, B. & Tukey, P.A. (1983). Graphical methods for data analysis. Belmont, CA: Wadsworth.
  • [5] Donoho, D.L. & Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist., 20, 1803-1827.
  • [6] Everitt, B.S. (1994). Exploring multivariate data graphically: a brief review with examples. J. Appl. Statist., 21, 63-93.
  • [7] Flury, B. (1997). A first course in multivariate statistics. New York: Springer-Verlag.
  • [8] Gabriel, K.R. (1971). The biplot graphical display of matrices with application to principal component analysis. Biometrika, 58, 453-467.
  • [9] Gardner, S. (2001). Extensions of biplot methodology to discriminant analysis with applications of non-parametric principal components. Ph.D. thesis. University of Stellenbosch, Stellenbosch.
  • [10] Gardner, S. & le Roux, N.J. (2002). Biplot methodology for discriminant analysis based upon robust methods and principal curves. In Proceedings of the 8th Conference of the International Federation of Classification Societies. Data analysis and classification, Eds. K. Jajuga, A. Sokolowski & H.-H. Bock, pp. 169-176. Berlin: Springer-Verlag.
  • [11] Goosen, D. (2002). Factors influencing fruit shape in lemons (Citrus limon L.). M.Sc. (Agric.) thesis. University of Stellenbosch, Stellenbosch.
  • [12] Gower, J. C. & Hand, D. J. (1996). Biplots. London: Chapman & Hall.
  • [13] Hastie, T. & Stuetzle, W. (1989). Principal curves. J. Amer. Statist. Assoc., 84, 502-516.
  • [14] Lachenbruch, P.A. & Mickey, M.R. (1968). Estimation of error rates in discriminant analysis. Technometrics, 10, 1-11.
  • [15] Lehmann, E.L. (1988). Statistics: An overview. In Encyclopedia of Statistical Sciences, Volume 8, Eds. S. Kotz & N.L. Johnson, pp. 683-702. New York: Wiley.
  • [16] le Roux, N.J., Gardner, S. & Olivier, P. (2003). Biplots for displaying multidimensional financial performance data graphically. SA J. Account. Res., 17(1), 41-64.
  • [17] McGill, R., Tukey, J.W. & Larsen, W.A. (1978). Variations of box plots. The American Statistician, 32, 12-16.
  • [18] Rousseeuw, P.J., Ruts, I. & Tukey, J.W. (1999). The bagplot: a bivariate boxplot. The American Statistician, 53, 382-387.
  • [19] Ruts, I. & Rousseeuw, P.J. (1996). Computing depth contours of bivariate point clouds. CSDA, 23, 153-168.
  • [20] Southern African Labour and Development Research Unit (SALDRU) & World Bank. (1993). Living Standards and Development Survey. Cape Town: SALDRU.
  • [21] Tukey, J.W. (1975). Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians, 2, 523-531.
  • [22] van der Berg, S., Wood, L. & le Roux, N. (2002). Differentiation in black education. Development Southern Africa, 19, 289-306.
  • [23] Wurz, S., le Roux, N.J., Gardner, S. & Deacon, H.J. (2003). Discriminating between the end products of the earlier Middle Stone Age sub-stages at Klasies River using biplot methodology. J. Archaeol. Sci., 30, 1107-1126.
  • [24] Wurz, S., Van Peer, P., le Roux, N.J., Gardner, S. & Deacon, H.J. (2005). Continental patterns in stone tools: a technological and biplot-based comparison of Early Late Pleistocene assemblages from northern and southern Africa. Afr. Archaeol. Rev., 22, 1-24.