Involve: A Journal of Mathematics

  • Involve
  • Volume 2, Number 1 (2009), 37-64.

Computing points of small height for cubic polynomials

Robert Benedetto, Benjamin Dickman, Sasha Joseph, Benjamin Krause, Daniel Rubin, and Xinwen Zhou

Full-text: Open access

Abstract

Let ϕ[z] be a polynomial of degree d at least two. The associated canonical height ĥϕ is a certain real-valued function on that returns zero precisely at preperiodic rational points of ϕ. Morton and Silverman conjectured in 1994 that the number of such points is bounded above by a constant depending only on d. A related conjecture claims that at nonpreperiodic rational points, ĥϕ is bounded below by a positive constant (depending only on d) times some kind of height of ϕ itself. In this paper, we provide support for these conjectures in the case d=3 by computing the set of small height points for several billion cubic polynomials.

Article information

Source
Involve, Volume 2, Number 1 (2009), 37-64.

Dates
Received: 25 September 2008
Revised: 25 November 2008
Accepted: 26 November 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.involve/1513799116

Digital Object Identifier
doi:10.2140/involve.2009.2.37

Mathematical Reviews number (MathSciNet)
MR2501344

Zentralblatt MATH identifier
1194.37187

Subjects
Primary: 11G50: Heights [See also 14G40, 37P30]
Secondary: 11S99: None of the above, but in this section 37F10: Polynomials; rational maps; entire and meromorphic functions [See also 32A10, 32A20, 32H02, 32H04]

Keywords
canonical height $p$-adic dynamics preperiodic points

Citation

Benedetto, Robert; Dickman, Benjamin; Joseph, Sasha; Krause, Benjamin; Rubin, Daniel; Zhou, Xinwen. Computing points of small height for cubic polynomials. Involve 2 (2009), no. 1, 37--64. doi:10.2140/involve.2009.2.37. https://projecteuclid.org/euclid.involve/1513799116


Export citation

References

  • M. Baker, “A lower bound for average values of dynamical Green's functions”, Math. Res. Lett. 13:2-3 (2006), 245–257.
  • R. L. Benedetto, “Preperiodic points of polynomials over global fields”, J. Reine Angew. Math. 608 (2007), 123–153.
  • G. S. Call and S. W. Goldstine, “Canonical heights on projective space”, J. Number Theory 63:2 (1997), 211–243.
  • G. S. Call and J. H. Silverman, “Canonical heights on varieties with morphisms”, Compositio Math. 89:2 (1993), 163–205.
  • E. V. Flynn, B. Poonen, and E. F. Schaefer, “Cycles of quadratic polynomials and rational points on a genus-$2$ curve”, Duke Math. J. 90:3 (1997), 435–463.
  • A. Gillette, Searching for small canonical heights: finding a minumum speed limit on the road to infinity, undergraduate thesis, Amherst College, 2004.
  • F. Q. Gouvêa, $p$-adic numbers: an introduction, Second ed., Springer, Berlin, 1997.
  • M. Hindry and J. H. Silverman, Diophantine geometry: an introduction, Graduate Texts in Math. 201, Springer, New York, 2000.
  • P. Ingram, “Lower bounds on the canonical height associated to the morphism $\phi(z)=z^d+c$”, Monatsh. Math.. To appear.
  • N. Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, 2nd ed., Graduate Texts in Math. 58, Springer, New York, 1984.
  • S. Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983.
  • M. Manes, Arithmetic dynamics of rational maps, Ph.D. thesis, Brown University, 2007.
  • B. Mazur, “Modular curves and the Eisenstein ideal”, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978).
  • L. Merel, “Bornes pour la torsion des courbes elliptiques sur les corps de nombres”, Invent. Math. 124:1-3 (1996), 437–449.
  • P. Morton, “Arithmetic properties of periodic points of quadratic maps”, Acta Arith. 62:4 (1992), 343–372.
  • P. Morton, “Arithmetic properties of periodic points of quadratic maps, II”, Acta Arith. 87:2 (1998), 89–102.
  • P. Morton and J. H. Silverman, “Rational periodic points of rational functions”, Internat. Math. Res. Notices 1994:2 (1994), 97–110.
  • P. Morton and J. H. Silverman, “Periodic points, multiplicities, and dynamical units”, J. Reine Angew. Math. 461 (1995), 81–122.
  • W. Narkiewicz, “Polynomial cycles in algebraic number fields”, Colloq. Math. 58:1 (1989), 151–155.
  • D. G. Northcott, “Periodic points on an algebraic variety”, Ann. of Math. $(2)$ 51 (1950), 167–177.
  • T. Pezda, “Polynomial cycles in certain local domains”, Acta Arith. 66:1 (1994), 11–22.
  • B. Poonen, “The classification of rational preperiodic points of quadratic polynomials over $\Q$: a refined conjecture”, Math. Z. 228:1 (1998), 11–29.
  • J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Math. 241, Springer, New York, 2007.
  • M. Zieve, Cycles of polynomial mappings, Ph.D. thesis, UC Berkeley, 1996.