Involve: A Journal of Mathematics

  • Involve
  • Volume 7, Number 1 (2014), 41-55.

Slide-and-swap permutation groups

Onyebuchi Ekenta, Han Gil Jang, and Jacob Siehler

Full-text: Open access

Abstract

We present a simple tile-sliding game that can be played on any 3-regular graph, generating a permutation group on the vertices. We classify the resulting permutation groups and obtain a novel presentation for the simple group of 168 elements.

Article information

Source
Involve, Volume 7, Number 1 (2014), 41-55.

Dates
Received: 16 July 2012
Revised: 10 May 2013
Accepted: 25 May 2013
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.involve/1513733631

Digital Object Identifier
doi:10.2140/involve.2014.7.41

Mathematical Reviews number (MathSciNet)
MR3127320

Zentralblatt MATH identifier
1292.20002

Subjects
Primary: 20B15: Primitive groups 91A43: Games involving graphs [See also 05C57]

Keywords
simple group permutation group primitive group graph theory

Citation

Ekenta, Onyebuchi; Jang, Han Gil; Siehler, Jacob. Slide-and-swap permutation groups. Involve 7 (2014), no. 1, 41--55. doi:10.2140/involve.2014.7.41. https://projecteuclid.org/euclid.involve/1513733631


Export citation

References

  • A. F. Archer, “A modern treatment of the 15 puzzle”, Amer. Math. Monthly 106:9 (1999), 793–799.
  • J. H. Conway, “$M_{13}$”, pp. 1–11 in Surveys in combinatorics, 1997, edited by R. A. Bailey, London Math. Soc. Lecture Note Ser. 241, Cambridge Univ. Press, 1997.
  • J. H. Conway, N. D. Elkies, and J. L. Martin, “The Mathieu group $M_{12}$ and its pseudogroup extension $M_{13}$”, Experiment. Math. 15:2 (2006), 223–236.
  • J. D. Dixon, Problems in group theory, Dover, 1973.
  • J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics 163, Springer, New York, 1996.
  • A. Fink and R. Guy, “Rick's tricky six puzzle: $S_5$ sits specially in $S_6$”, Math. Mag. 82:2 (2009), 83–102.
  • O. Goldreich, “Finding the shortest move-sequence in the graph-generalized 15-puzzle is NP-hard”, 1984, http://tinyurl/15puzz-pdf. preprint.
  • D. Ratner and M. Warmuth, “The $(n^2-1)$-puzzle and related relocation problems”, J. Symbolic Comput. 10:2 (1990), 111–137.
  • R. C. Read and R. J. Wilson, An atlas of graphs, The Clarendon Press Oxford University Press, New York, 1998.
  • J. A. Siehler, “Slide and swap on cubic graphs”, website, 2011, http://tinyurl.com/sandscubic.
  • R. M. Wilson, “Graph puzzles, homotopy, and the alternating group”, J. Combinatorial Theory Ser. B 16 (1974), 86–96.