Involve: A Journal of Mathematics

  • Involve
  • Volume 8, Number 3 (2015), 401-420.

A mathematical model for the emergence of HIV drug resistance during periodic bang-bang type antiretroviral treatment

Nicoleta Tarfulea and Paul Read

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/involve.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In treating HIV infection, strict adherence to drug therapy is crucial in maintaining a low viral load, but the high dosages required for this often have toxic side effects which make perfect adherence to antiretroviral therapy (ART) unsustainable. Moreover, even in the presence of drug therapy, ongoing viral replication can lead to the emergence of drug-resistant virus variances. We introduce a mathematical model that incorporates two viral strains, wild-type and drug-resistant, to theoretically and numerically investigate HIV pathogenesis during ART. A periodic model of bang-bang type is employed to estimate the drug efficacies. Furthermore, we numerically investigate the antiviral response and we characterize successful drugs or drug combination scenarios for both strains of the virus.

Article information

Source
Involve, Volume 8, Number 3 (2015), 401-420.

Dates
Received: 6 July 2011
Revised: 8 August 2013
Accepted: 31 May 2014
First available in Project Euclid: 22 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.involve/1511370884

Digital Object Identifier
doi:10.2140/involve.2015.8.401

Mathematical Reviews number (MathSciNet)
MR3356082

Zentralblatt MATH identifier
1354.92093

Subjects
Primary: 92D30: Epidemiology
Secondary: 92B05: General biology and biomathematics 34A34: Nonlinear equations and systems, general

Keywords
HIV dynamics time-varying antiretroviral treatment drug resistance

Citation

Tarfulea, Nicoleta; Read, Paul. A mathematical model for the emergence of HIV drug resistance during periodic bang-bang type antiretroviral treatment. Involve 8 (2015), no. 3, 401--420. doi:10.2140/involve.2015.8.401. https://projecteuclid.org/euclid.involve/1511370884


Export citation

References

  • B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne, and E. S. Rosenberg, “HIV dynamics: modeling, data analysis, and optimal treatment protocols”, J. Comput. Appl. Math. 184:1 (2005), 10–49.
  • M. Bofill, G. Janossy, C. A. Lee, D. MacDonald-Burns, A. N. Phillips, C. Sabin, A. Timms, M. A. Johnson, and P. B. Kernoff, “Laboratory control values for CD4 and CD8 T lymphocytes: implications for HIV-1 diagnosis”, Clin. Exp. Immunol. 88:2 (1992), 243–252.
  • S. Bonhoeffer, M. Rembiszewski, G. M. Ortiz, and D. F. Nixon, “Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection”, AIDS 14:15 (2000), 2313–2322.
  • D. Burg, L. Rong, A. U. Neumann, and H. Dahari, “Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection”, J. Theor. Biol. 259:4 (2009), 751–759.
  • R. Casiday and R. Frey, “Drug strategies to target HIV: enzyme kinetics and enzyme inhibitors”, preprint, Washington University, St. Louis, MO, 2001, hook http://www.chemistry.wustl.edu/~edudev/LabTutorials/HIV/DrugStrategies.html \posturlhook.
  • C. J. Cohen, “EuroSIDA study confirms ability of most HAART regimens to decrease rates of illness and death”, in The 12th Conference on Retroviruses and Opportunistic Infections (Boston, 2005), The Body Pro, New York, February 24, 2005.
  • C. J. Cohen, “Ritonavir-boosted protease inhibitors, 1: Strategies for balancing efficacy with effects on lipids”, AIDS Read. 15:9 (2005), 462–465, 470–471, 474, 477.
  • C. J. Cohen and B. A. Boyle, “Antiretroviral therapy: the `when to start' debates”, Clin. Infect. Dis. 39:11 (2004), 1705–1708.
  • P. De Leenheer, “Within-host virus models with periodic antiviral therapy”, Bull. Math. Biol. 71:1 (2009), 189–210.
  • P. De Leenheer and H. L. Smith, “Virus dynamics: a global analysis”, SIAM J. Appl. Math. 63:4 (2003), 1313–1327.
  • W. M. El-Sadr et al., “CD4+ count-guided interruption of antiretroviral treatment”, N. Engl. J. Med. 355:22 (2006), 2283–2296.
  • A. S. Fauci, “Immunopathogenesis of HIV infection”, J. Acquir. Immune Defic. Syndr. 6:6 (1993), 655–662.
  • Y. Huang, “Long-term HIV dynamic models incorporating drug adherence and resistance to treatment for prediction of virological responses”, Comput. Stat. Data Anal. 52:7 (2008), 3765–3778.
  • T. B. Kepler and A. S. Perelson, “Drug concentration heterogeneity facilitates the evolution of drug resistance”, Proc. Natl. Acad. Sci. USA 95:20 (1998), 11514–11519.
  • D. E. Kirschner and G. F. Webb, “Understanding drug resistance for monotheraphy treatment of HIV infection”, Bull. Math. Biol. 59:4 (1997), 763–786.
  • R. A. Koup, J. T. Safrit, Y. Cao, C. A. Andrews, G. McLeod, W. Borkowsky, C. Farthing, and D. D. Ho, “Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome”, J. Virol. 68:7 (1994), 4650–4655.
  • A. J. McMichael, “How HIV fools the immune system”, MRC News (Winter 1996).
  • H. Mohri, S. Bonhoeffer, S. Monard, A. S. Perelson, and D. D. Ho, “Rapid turnover of T lymphocytes in SIV-infected rhesus macaques”, Science 279:5354 (1998), 1223–1227.
  • J. M. Murray and A. S. Perelson, “Human immunodeficiency virus: quasi-species and drug resistance”, Multiscale Model. Simul. 3:2 (2005), 300–311.
  • National Health Service, “HIV and AIDS”, 2008, hook http://www.nhs.uk/Conditions/HIV \posturlhook.
  • M. A. Nowak, A. L. Lloyd, G. M. Vasquez, T. A. Wiltrout, L. M. Wahl, N. Bischofberger, J. Williams, A. Kinter, A. S. Fauci, V. M. Hirsch, and J. D. Lifson, “Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection”, J. Virol. 71:10 (1997), 7518–7525.
  • A. S. Perelson and P. W. Nelson, “Mathematical analysis of HIV-1 dynamics in vivo”, SIAM Rev. 41:1 (1999), 3–44.
  • A. S. Perelson, D. E. Kirschner, and R. De Boer, “Dynamics of HIV infection of CD4+ T cells”, Math. Biosci. 114:1 (1993), 81–125.
  • N. Rapin, C. Kesmir, S. Frankild, M. Nielsen, C. Lundegaard, S. Brunak, and O. Lund, “Modelling the human immune system by combining bioinformatics and systems biology approaches”, J. Biol. Phys. 32:3–4 (2006), 335–353.
  • R. M. Ribeiro, S. Bonhoeffer, and M. A. Nowak, “The frequency of resistant mutant virus before antiviral therapy”, AIDS 12:5 (1998), 461–465.
  • L. Rong, Z. Feng, and A. S. Perelson, “Emergence of HIV-1 drug resistance during antiretroviral treatment”, Bull. Math. Biol. 69:6 (2007), 2027–2060.
  • L. Rong, M. A. Gilchrist, Z. Feng, and A. S. Perelson, “Modeling within-host HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral enzyme function and drug susceptibility”, J. Theor. Biol. 247:4 (2007), 804–818.
  • O. Sharomi and A. B. Gumel, “Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs”, J. Biol. Dyn. 2:3 (2008), 323–345.
  • T. Shiri, W. Garira, and S. D. Musekwa, “A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters”, Math. Biosci. Eng. 2:4 (2005), 811–832.
  • R. J. Smith and L. M. Wahl, “Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects”, Bull. Math. Biol. 67 (2005), 783–813.
  • M. A. Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho, and A. S. Perelson, “Modeling plasma virus concentration during primary HIV infection”, J. Theor. Biol. 203:3 (2000), 285–301.
  • N. E. Tarfulea, “A mathematical model for HIV treatment with time-varying antiretroviral therapy”, Int. J. Comput. Math. 88:15 (2011), 3217–3235.
  • N. E. Tarfulea, “A mathematical model for the CTL effect on the drug resistance during antiretroviral treatment of HIV infection”, IMA Preprint Series #2377, Institute for Mathematics and its Applications, Minneapolis, MN, August 2011, hook http://www.ima.umn.edu/preprints/pp2011/2377.pdf \posturlhook.
  • N. E. Tarfulea, A. Blink, E. Nelson, and D. Turpin, Jr., “A CTL-inclusive mathematical model for antiretroviral treatment of HIV infection”, Int. J. Biomath. 4:1 (2011), 1–22.
  • L. M. Wahl and M. A. Nowak, “Adherence and drug resistance: predictions for therapy outcome”, Proc. R. Soc. Lond. B 267:1445 (2000), 835–843.
  • J. D. K. Wilson, G. S. Ogg, R. L. Allen, C. Davis, S. Shaunak, J. Downie, W. Dyer, C. Workman, J. S. Sullivan, A. J. McMichael, and S. L. Rowland-Jones, “Direct visualization of HIV-1-specific cytotoxic T lymphocytes during primary infection”, AIDS 14:3 (2000), 225–233.