Institute of Mathematical Statistics Collections

Mechanical models in nonparametric regression

Vladimír Balek and Ivan Mizera

Full-text: Open access

Chapter information

Source
Banerjee, M., Bunea, F., Huang, J., Koltchinskii, V., and Maathuis, M. H., eds., From Probability to Statistics and Back: High-Dimensional Models and Processes -- A Festschrift in Honor of Jon A. Wellner, (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2013) , 5-19

Dates
First available in Project Euclid: 8 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.imsc/1362751176

Digital Object Identifier
doi:10.1214/12-IMSCOLL902

Mathematical Reviews number (MathSciNet)
MR3186745

Zentralblatt MATH identifier
1320.62231

Rights
Copyright © 2010, Institute of Mathematical Statistics

Citation

Balek, Vladimír; Mizera, Ivan. Mechanical models in nonparametric regression. From Probability to Statistics and Back: High-Dimensional Models and Processes -- A Festschrift in Honor of Jon A. Wellner, 5--19, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2013. doi:10.1214/12-IMSCOLL902. https://projecteuclid.org/euclid.imsc/1362751176


Export citation

References

  • [1] Arnol’d, V. I. (1990). Huygens and Barrow, Newton and Hooke. Birkhäuser, Basel.
  • [2] Balek, V. (2011). Mechanics of plates. http://xxx.lanl.gov/abs/1110.2050.
  • [3] Bookstein, F. L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.
  • [4] Chen, S. S., Donoho, D. L. and Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20 33–61.
  • [5] Collatz, L. (1966). Functional Analysis and Numerical Mathematics. Academic Press, New York.
  • [6] Davies, P. L. and Kovac, A. (2001). Local extremes, runs, strings and multiresolution (with discussion). Ann. Statist. 29 1–65.
  • [7] Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. Wiley, Chichester.
  • [8] Duchamp, T. and Stuetzle, W. (2003). Spline smoothing on surfaces. Journal of Computational and Graphical Statistics 12 354–381.
  • [9] Duchon, J. (1976). Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O., Analyse numérique 10 1–13.
  • [10] Franke, R. (1985). Thin plate splines with tension. Computer Aided Geometric Design 2 85–95.
  • [11] Friedman, J., Hastie, T., Höfling, H. and Tibshirani, R. (2007). Pathwise coordinate optimization. Ann. Appl. Statist. 1 302–332.
  • [12] Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman and Hall, London.
  • [13] Harder, R. L. and Desmarais, R. N. (1972). Interpolation using surface splines. J. Aircraft 9 189–191.
  • [14] He, X., Ng, P. and Portnoy, S. (1998). Bivariate quantile smoothing splines. J. R. Statist. Soc. B 60 537–550.
  • [15] Hegland, M., Roberts, S. and Altas, I. (1998). Finite element thin plate splines for surface fitting. In: Computational Techniques and Applications: CTAC 97 (J. Noye, M. Teubner and A. Gill, eds.). World Scientific, Singapore.
  • [16] Kachanov, A. M. (1956). Osnovy Teorii Plastichnosti. GITTL, Moscow.
  • [17] Koenker, R. and Mizera, I. (2002). Elastic and plastic splines: Some experimental comparisons. In Statistical Data Analysis Based on the L1-Norm and Related Methods (Y. Dodge, ed.) 405–414. Birkhäuser, Basel.
  • [18] Koenker, R. and Mizera, I. (2004). Penalized triograms: Total variation regularization for bivariate smoothing. J. R. Statist Soc. B 66 1681–1736.
  • [19] Koenker, R., Ng, P. and Portnoy, S. (1994). Quantile smoothing splines. Biometrika 81 673–680.
  • [20] Lakes, R. (1987). Foam structures with a negative Poisson’s ratio. Science 27 1038–1040.
  • [21] Landau, L. D. and Lifshitz, Y. M. (1986). Theory of Elasticity. Pergamon Press, London. [Third English edition, revised and enlarged by E. M. Lifshitz, A. M. Kosevich and L. P. Pitaevskii; translated from Teoriia uprugosti, Moskva, Nauka, 1986, by J. B. Sykes and W. H. Reid].
  • [22] Mammen, E. and van de Geer, S. A. (1997). Locally adaptive regression splines. Ann. Statist. 25 387–413.
  • [23] Mansfield, E. H. (1957). Studies in collapse analysis of rigid-plastic plates with a square yield diagram. Proc. R. Soc. of London A 241 311–338.
  • [24] Meinguet, J. (1979). Multivariate interpolation at arbitrary points made simple. J. Appl. Math. Phys. (ZAMP) 30 292–304.
  • [25] O’Sullivan, F. (1991). Discretized Laplacian smoothing by Fourier methods. J. Amer. Statist. Assoc. 86 634–642.
  • [26] Ramsay, T. O. (1999). A Bivariate Finite-Element Smoothing Spline Applied to Image Registration. Queen’s University, Kingston. Thesis.
  • [27] Ramsay, T. (2002). Spline smoothing over difficult regions. J. R. Statist. Soc. B 64 307–319.
  • [28] Rudin, L. I., Osher, S. and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D 60 259–268.
  • [29] Schölkopf, B. and Smola, A. J. (2002). Learning With Kernels. MIT Press, Cambridge, MA.
  • [30] Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. J. R. Statist. Soc. B 47 1–52.
  • [31] Small, C. G. (1996). The Statistical Theory of Shape. Springer-Verlag, New York.
  • [32] Témam, R. (1983). Problèmes Mathématiques en Plasticité. Bordas, Paris. [English translation: Mathematical Problems in Plasticity, Bordas, Paris, 1985].
  • [33] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58 267–288.
  • [34] Timoshenko, S. P. and Woinowsky-Krieger, S. (1959). Theory of Plates and Shells. McGraw-Hill, New York.
  • [35] Wahba, G. (1990). Spline models for observational data. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.
  • [36] Wood, S. N. (2003). Thin-plate regression splines. J. R. Statist. Soc. B 65 95–114.
  • [37] Yang, W. H. (1980). A useful theorem for constructing convex yield functions. J. Appl. Mech. 47 301–303.
  • [38] Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. R. Statist. Soc. B 67 301–320.