Institute of Mathematical Statistics Collections

A note on bounds for VC dimensions

Jon A. Wellner and Aad van der Vaart

Full-text: Open access


We provide bounds for the VC dimension of class of sets formed by unions, intersections, and products of VC classes of sets $\mathcal{C}$1, …, $\mathcal{C}$m.

Chapter information

Christian Houdré, Vladimir Koltchinskii, David M. Mason and Magda Peligrad, eds., High Dimensional Probability V: The Luminy Volume (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2009), 103-107

First available in Project Euclid: 2 February 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60B99: None of the above, but in this section
Secondary: 62G30: Order statistics; empirical distribution functions

Vapnik-Chervonenkis class combining classes inequality entropy

Copyright © 2009, Institute of Mathematical Statistics


van der Vaart, Aad; Wellner, Jon A. A note on bounds for VC dimensions. High Dimensional Probability V: The Luminy Volume, 103--107, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2009. doi:10.1214/09-IMSCOLL508.

Export citation


  • [1] Assouad, P. (1983). Densité et dimension. Ann. Inst. Fourier (Grenoble) 33 233–282.
  • [2] Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899–929 (1979).
  • [3] Dudley, R. M. (1984). A course on empirical processes. In École d’été de probabilités de Saint-Flour, XII—1982. Lecture Notes in Math. 1097 1–142. Springer, Berlin.
  • [4] Dudley, R. M. (1999). Notes on Empirical Processes. MaPhySto Lecture Notes 4.
  • [5] Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics 63. Cambridge University Press, Cambridge.
  • [6] Laskowski, M. C. (1992). Vapnik-Chervonenkis classes of definable sets. J. London Math. Soc. (2) 45 377–384.
  • [7] Olshen, R. A., Biden, E. N., Wyatt, M. P. and Sutherland, D. H. (1989). Gait analysis and the bootstrap. Ann. Statist. 17 1419–1440.
  • [8] Pakes, A. and Pollard, D. (1989). Simulation and the asymptotics of optimization estimators. Econometrica 57 1027–1057.
  • [9] Pollard, D. (1984). Convergence of Stochastic Processes. Springer Series in Statistics. Springer-Verlag, New York.
  • [10] Stengle, G. and Yukich, J. E. (1989). Some new Vapnik-Chervonenkis classes. Ann. Statist. 17 1441–1446.
  • [11] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer-Verlag, New York. With applications to statistics.