Institute of Mathematical Statistics Collections

Estimation of population-level summaries in general semiparametric repeated measures regression models

Arnab Maity, Tatiyana V. Apanasovich, and Raymond J. Carroll

Full-text: Open access

Abstract

This paper considers a wide family of semiparametric repeated measures regression models, in which the main interest is on estimating population-level quantities such as mean, variance, probabilities etc. Examples of our framework include generalized linear models for clustered/longitudinal data, among many others. We derive plug-in kernel-based estimators of the population level quantities and derive their asymptotic distribution. An example involving estimation of the survival function of hemoglobin measures in the Kenya hemoglobin study data is presented to demonstrate our methodology.

Chapter information

Source
N. Balakrishnan, Edsel A. Peña and Mervyn J. Silvapulle, eds., Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2008), 123-137

Dates
First available in Project Euclid: 1 April 2008

Permanent link to this document
https://projecteuclid.org/euclid.imsc/1207058269

Digital Object Identifier
doi:10.1214/193940307000000095

Mathematical Reviews number (MathSciNet)
MR2462202

Subjects
Primary: 62G08: Nonparametric regression 62J02: General nonlinear regression
Secondary: 62J12: Generalized linear models

Keywords
clustered/longitudinal data generalized estimating equations generalized linear mixed models kernel method marginal models measurement error nonparametric regression partially linear model profile method repeated measures

Rights
Copyright © 2008, Institute of Mathematical Statistics

Citation

Maity, Arnab; Apanasovich, Tatiyana V.; Carroll, Raymond J. Estimation of population-level summaries in general semiparametric repeated measures regression models. Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen, 123--137, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2008. doi:10.1214/193940307000000095. https://projecteuclid.org/euclid.imsc/1207058269


Export citation

References

  • [1] Chen, X., Linton, O. and Van Keilegom, I. (2003). Estimation of semiparametric models when the criterion function is not smooth. Econometrica 71 1591–1608.
  • [2] Lin, X. and Carroll, R. J. (2006). Semiparametric estimation in general repeated measures problems. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 69–88.
  • [3] Maity, A., Ma, Y. and Carroll, R. J. (2007). Efficient estimation of population-level summaries in general semiparametric regression models. J. Amer. Statist. Assoc. 102 123–139.
  • [4] Sepanski, J. H., Knickerbocker, R. and Carroll, R. J. (1994). A semiparametric correction for attenuation. J. Amer. Statist. Assoc. 89 1366–1373.
  • [5] Zeger, S. and Diggle, P. (1994). Semiparametric models for longitudinal data with application to cd4 cell numbers in hiv seroconverters. Biometrics 50 689–699.
  • [6] Zhang, D., Lin, X., Raz, J. and Sowers, M. (1998). Semiparametric stochastic mixed models for longitudinal data. J. Amer. Statist. Assoc. 93 710–719.