Illinois Journal of Mathematics

Borcea–Voisin mirror symmetry for Landau–Ginzburg models

Amanda Francis, Nathan Priddis, and Andrew Schaug

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Fan–Jarvis–Ruan–Witten theory is a formulation of physical Landau–Ginzburg models with a rich algebraic structure, rooted in enumerative geometry. As a consequence of a major physical conjecture, called the Landau–Ginzburg/Calabi–Yau correspondence, several birational morphisms of Calabi–Yau orbifolds should correspond to isomorphisms in Fan–Jarvis–Ruan–Witten theory. In this paper, we exhibit some of these isomorphisms that are related to Borcea–Voisin mirror symmetry. In particular, we develop a modified version of Berglund–Hübsch–Krawitz mirror symmetry for certain Landau–Ginzburg models. Using these isomorphisms, we prove several interesting consequences in the corresponding geometries.

Article information

Source
Illinois J. Math., Volume 63, Number 3 (2019), 425-461.

Dates
Received: 30 April 2019
Revised: 2 July 2019
First available in Project Euclid: 19 September 2019

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1568858866

Digital Object Identifier
doi:10.1215/00192082-7899497

Mathematical Reviews number (MathSciNet)
MR4012350

Zentralblatt MATH identifier
07110748

Subjects
Primary: 14J32: Calabi-Yau manifolds
Secondary: 14J33: Mirror symmetry [See also 11G42, 53D37] 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45] 14J28: $K3$ surfaces and Enriques surfaces 51P05: Geometry and physics (should also be assigned at least one other classification number from Sections 70-86)

Citation

Francis, Amanda; Priddis, Nathan; Schaug, Andrew. Borcea–Voisin mirror symmetry for Landau–Ginzburg models. Illinois J. Math. 63 (2019), no. 3, 425--461. doi:10.1215/00192082-7899497. https://projecteuclid.org/euclid.ijm/1568858866


Export citation

References

  • [1] M. Artebani, S. Boissière, and A. Sarti, The Berglund–Hübsch–Chiodo–Ruan mirror symmetry for K3 surfaces, J. Math. Pures Appl. 102 (2014), no. 4, 758–781.
  • [2] M. Artebani, S. Boissière, and A. Sarti, Borcea–Voisin Calabi–Yau threefolds and invertible potential, Math. Nachr. 288 (2015), nos.14–15, 1581–1591.
  • [3] A. Basalaev, A. Takahashi, and E. Werner, Orbifold Jacobian algebras for exceptional unimodal singularities, Arnold Math. J. 3 (2017), no. 4, 483–498.
  • [4] P. Berglund and M. Henningson, Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus, Nuclear Phys. B 433 (1995), no. 2, 311–332.
  • [5] P. Berglund and T. Hübsch, A generalized construction of mirror manifolds, Nuclear Phys. B 393 (1993), nos. 1–2, 377–391.
  • [6] C. Borcea, K3 surfaces with involution and mirror pairs of Calabi–Yau manifolds, Mirror Symm. II 1 (1997), 717–743.
  • [7] J. Bryan and T. Graber, “The crepant resolution conjecture” in Algebraic Geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math. 80, Amer. Math. Soc., Providence, RI, 2009, 23–42.
  • [8] A. Chiodo, H. Iritani, and Y. Ruan, Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. l’IHÉS 119 (2014), no. 1, 127–216.
  • [9] A. Chiodo, E. Kalashnikov, and D. C. Veniani, Semi-Calabi–Yau varieties and mirror pairs, preprint, arXiv:1509.06685.
  • [10] A. Chiodo and J. Nagel, “The hybrid Landau-Ginzburg models of Calabi–Yau complete intersections” in Topological Recursion and Its Influence in Analysis, Geometry, and Topology, Proc. Sympos. Pure Math. 100, Amer. Math. Soc., Providence, RI, 2018.
  • [11] A. Chiodo and Y. Ruan, LG/CY correspondence: The state space isomorphism, Adv. Math. 227 (2011), no. 6, 2157–2188.
  • [12] A. Chiodo and Y. Ruan, A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 7, 2803–2864.
  • [13] E. Clader, Landau–Ginzburg/Calabi–Yau correspondence for the complete intersections $X_{3,3}$ and $X_{2,2,2,2}$, Adv. Math. 307 (2017), 1–52.
  • [14] A. Dimca, Singularities and Topology of Hypersurfaces, Universitext, Springer, New York, 1992.
  • [15] I. Dolgachev, “Weighted projective varieties” in Group Actions and Vector Fields (Vancouver, BC, 1981), Lecture Notes in Math. 956, Springer, Berlin, 1982, 34–71.
  • [16] H. Fan, A. Francis, T. J. Jarvis, E. Merrell, and Y. Ruan, Witten’s D_4 integrable hierarchies conjecture, Chin. Ann. Math Ser. B, 37 (2016), no. 2, 175–192.
  • [17] H. Fan, T. J. Jarvis, and Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory, Ann. Math. 178 (2013), no. 1, 1–106.
  • [18] H. Fan, T. J. Jarvis, and Y. Ruan, A mathematical theory of the gauged linear sigma model, Geom. Topol. 22 (2018), no. 1, 235–303.
  • [19] A. Francis, Computational techniques in FJRW theory with applications to Landau–Ginzburg mirror symmetry, Adv. Theory Math. Phys. 19 (2015), no. 6, 1339–1383.
  • [20] A. Francis, T. Jarvis, D. Johnson, and R. Suggs, “Landau–Ginzburg mirror symmetry for orbifolded Frobenius algebras” in String-Math 2011, Proc. Sympos. Pure Math. 85, Amer. Math. Soc., Providence, 2011, 333–353.
  • [21] A. Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), no. 4, 551–568, 645.
  • [22] A. Givental, “Symplectic geometry of Frobenius structures” in Frobenius Manifolds, Aspects Math. E36, Friedrich Vieweg, Wiesbaden, 2004, 91–112.
  • [23] Y. Goto, R. Kloosterman, and N. Yui, Zeta-functions of certain $K3$-fibered Calabi–Yau threefolds, Int. J. Math. 22 (2011), no. 1, 67–129.
  • [24] Y. Goto, R. Livné, and N. Yui, Automorphy of Calabi–Yau threefolds of Borcea–Voisin type over $\mathbb{Q}$, Commun. Number Theory Phys. 7 (2013), no. 4, 581–670.
  • [25] J. Guéré, A Landau–Ginzburg mirror theorem without concavity, Duke Math. J. 165 (2016), no. 13, 2461–2527.
  • [26] W. He, S. Li, and Y. Li, G-twisted braces and orbifold Landau–Ginzburg models, preprint, arXiv:1801.04560.
  • [27] W. He, S. Li, Y. Shen, and R. Webb, Landau–Ginzburg mirror symmetry conjecture, preprint, arXiv:1503.01757.
  • [28] K. Intriligator and C. Vafa, Landau–Ginzburg orbifolds, Nuclear Phys. B 339 (1990), no. 1, 95–120.
  • [29] R. M. Kaufmann, “Orbifold Frobenius algebras, cobordisms and monodromies” in Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math. 310, Amer. Math. Soc., Providence, 2002, 135–161.
  • [30] R. M. Kaufmann, Orbifolding Frobenius algebras, Int. J. Math. 14 (2003), no. 6, 573–617.
  • [31] R. M. Kaufmann, “Singularities with symmetries, orbifold Frobenius algebras and mirror symmetry” in Gromov–Witten Theory of Spin Curves and Orbifolds, Contemp. Math. 403, Amer. Math. Soc., Providence, 2006, 67–116.
  • [32] T. L. Kelly, Berglund–Hübsch–Krawitz mirrors via Shioda maps, Adv. Theor. Math. Phys. 17 (2013), no. 6, 1425–1449.
  • [33] M. Krawitz, FJRW rings and Landau–Ginzburg mirror symmetry, Ph.D. dissertation, University of Michigan, 2010.
  • [34] M. Krawitz, N. Priddis, P. Acosta, N. Bergin, and H. Rathnakumara, FJRW-rings and mirror symmetry, Comm. Math. Phys. 296 (2010), no. 1, 145–174.
  • [35] Y.-P. Lee, H.-W. Lin, and C.-L. Wang, Flops, motives, and invariance of quantum rings, Ann. of Math. (2) 172 (2010), no.1, 243–290.
  • [36] A.-M. Li and Y. Ruan, Symplectic surgery and Gromov–Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), no. 1, 151–218.
  • [37] I. Nakamura, Hilbert schemes of abelian group orbits, Tohoku J. Math. 42 (1990), 351–380.
  • [38] V. Nikulin, Finite groups of automorphisms of Kählerian K3 surfaces (in Russian), Tr. Mosk. Mat. Obs. 38 (1979).
  • [39] M. Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005), no. 1, 209–236.
  • [40] K. Saito, Primitive forms for a universal unfolding of a function with an isolated critical point, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 28 (1982), no. 3, 775–792.
  • [41] K. Saito, “The higher residue pairings $K_{F}^{(k)}$ for a family of hypersurface singular points” in Singularities, Part 2 (Arcata, CA, 1981), Proc. Sympos. Pure Math. 40, Amer. Math. Soc., Providence, 1983, 441–463.
  • [42] K. Saito, Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 1231–1264.
  • [43] K. Saito and A. Takahashi, “From primitive forms to Frobenius manifolds” in From Hodge Theory to Integrability and TQFT tt∗-Geometry, Proc. Sympos. Pure Math. 78, Amer. Math. Soc., Providence, 2008, 31–48.
  • [44] A. Schaug, Quantum mirror symmetry for Borcea–Voisin threefolds, preprint, arXiv:1510.08333.
  • [45] A. Schaug, The Gromov–Witten theory of Borcea–Voisin orbifolds and its analytic continuations, preprint, arXiv:1506.07226.
  • [46] M. Shoemaker, Birationality of Berglund–Hübsch–Krawitz mirrors, Comm. Math. Phys. 331 (2014), no. 2, 417–429.
  • [47] C. Voisin, Miroirs et involutions sur les surfaces $K3$, J. Geom. Alg. d’Orsay 218 (1993), 273–323.
  • [48] C. T. C. Wall, A note on symmetry of singularities, Bull. Lond. Math. Soc. 12 (1980), no. 3, 169–175.
  • [49] H. Yonemura. Hypersurface simple K3 singularities, J. Alg. Geom. 10 (2001), 757–779.