Illinois Journal of Mathematics

Angular derivatives and semigroups of holomorphic functions

Nikolaos Karamanlis

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A simply connected domain ΩC is convex in the positive direction if for every zΩ, the half-line {z+t:t0} is contained in Ω. We provide necessary and sufficient conditions for the existence of an angular derivative at for domains convex in the positive direction which are contained either in a horizontal half-plane or in a horizontal strip. This class of domains arises naturally in the theory of semigroups of holomorphic functions, and the existence of an angular derivative has interesting consequences for the semigroup.

Article information

Source
Illinois J. Math., Volume 63, Number 3 (2019), 403-424.

Dates
Received: 17 October 2018
Revised: 19 June 2019
First available in Project Euclid: 19 September 2019

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1568858865

Digital Object Identifier
doi:10.1215/00192082-7897499

Mathematical Reviews number (MathSciNet)
MR4012349

Zentralblatt MATH identifier
07110747

Subjects
Primary: 30D05: Functional equations in the complex domain, iteration and composition of analytic functions [See also 34Mxx, 37Fxx, 39-XX]
Secondary: 30C45: Special classes of univalent and multivalent functions (starlike, convex, bounded rotation, etc.) 30C35: General theory of conformal mappings 31A15: Potentials and capacity, harmonic measure, extremal length [See also 30C85]

Citation

Karamanlis, Nikolaos. Angular derivatives and semigroups of holomorphic functions. Illinois J. Math. 63 (2019), no. 3, 403--424. doi:10.1215/00192082-7897499. https://projecteuclid.org/euclid.ijm/1568858865


Export citation

References

  • [1] M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds, Res. Lecture Notes Math. Complex Anal. Geom., Mediterranean Press, Rende, 1989.
  • [2] L. V. Ahlfors, Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen, Acta Soc. Sci. Fenn. N. S. A. 1 (1930), no. 9, 1–40.
  • [3] L. Arosio and F. Bracci, Canonical models for holomorphic iteration, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3305–3339.
  • [4] A. Baernstein, Ahlfors and conformal invariants, Ann. Sci. Fenn. Ser. A.I. Mathematica 13 (1988), 289–312.
  • [5] D. Betsakos, Geometric description of the classification of holomorphic semigroups, Proc. Amer. Math. Soc. 144 (2016), no. 4, 1595–1604, 2016.
  • [6] D. Betsakos, M. D. Contreras, and S. Díaz-Madrigal, On the rate of convergence of semigroups of holomorphic functions at the Denjoy–Wolff point, to appear in Rev. Mat. Iberoam. (2019).
  • [7] F. Bracci, M. D. Contreras, S. Díaz-Madrigal, and H. Gaussier, Backward orbits and petals of semigroups of holomorphic self-maps of the unit disk, Ann. Math. Pura Appl. 198 (2019), 411–441.
  • [8] K. Burdzy, Brownian excursions and minimal thinness Part III: Applications to the angular derivative problem, Math Z. 192 (1986), 89–107.
  • [9] M. D. Contreras and S. Díaz-Madrigal, Analytic flows on the unit disk: Angular derivatives and boundary fixed points, Pac. J. Math. 222 (2005), no. 2, 253–286.
  • [10] M. D. Contreras, S. Díaz-Madrigal, and Ch. Pommerenke, Second angular derivatives and parabolic iteration in the unit disk, Trans. Amer. Math. Soc. 362 (2010), 357–388.
  • [11] C. C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), no. 1, 69–95.
  • [12] M. Elin and D. Shoikhet, Linearization Models for Complex Dynamical Systems: Topics in Univalent Functions, Functional Equations and Semigroup Theory, Oper. Theory Adv. Appl. 208, Birkhäuser, Basel, 2010.
  • [13] C. H. FitzGerald, B. Rodin, and S. E. Warschawski, Estimates of the harmonic measure of a continuum in the unit disk, Trans. Amer. Math. Soc. 287 (1985), 681–685.
  • [14] J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005.
  • [15] J. A. Jenkins, On comb domains, Proc. Amer. Math. Soc. 124 (1996), no. 1, 187–191.
  • [16] J. A. Jenkins and K. Oikawa, Conformality and semi-conformality at the boundary, J. Reine Angew. Math. 291 (1977), 92–117.
  • [17] N. Karamanlis, On the angular derivative of comb domains, Comput. Methods Funct. Theory, published online July 11, 2019.
  • [18] D. E. Marshall, Angular derivatives and Lipschitz majorants, preprint, 1995, http://math.washington.edu/~marshall/preprints/preprints.html.
  • [19] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, New York, 1992.
  • [20] B. Rodin and S. E. Warschawski, Extremal length and the boundary behavior of conformal mappings, Ann. Acad. Sci. Fenn. Ser. A. I. Mathematica 2 (1976), 467–500, 1976.
  • [21] B. Rodin and S. E. Warschawski, Extremal length and univalent functions I. The angular derivative, Math. Z. 153 (1977), 1–17.
  • [22] A. Yu. Solynin, Harmonic measure of continua with fixed diameter (in Russian), Zap. Nauch. Semin. LOMI 144 (1985), 146–149; English translation in J. Soviet Math. 38 (1987), 2140–2142.
  • [23] S. E. Warschawski, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942), 280–335.