Illinois Journal of Mathematics

Weighted local Hardy spaces associated to Schrödinger operators

Hua Zhu and Lin Tang

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we characterize the weighted local Hardy spaces $h^{p}_{\rho}(\omega)$ related to the critical radius function $\rho$ and weights $\omega\in A_{\infty}^{\rho,\infty}(\mathbb{R}^{n})$ which locally behave as Muckenhoupt’s weights and actually include them, by the local vertical maximal function, the local nontangential maximal function and the atomic decomposition. Then, we establish the equivalence of the weighted local Hardy space $h^{1}_{\rho}(\omega)$ and the weighted Hardy space $H^{1}_{\mathcal{L}}(\omega)$ associated to Schrödinger operators $\mathcal{L}$ with $\omega\in A_{1}^{\rho,\infty}(\mathbb{R}^{n})$. By the atomic characterization, we also prove the existence of finite atomic decompositions associated with $h^{p}_{\rho}(\omega)$. Furthermore, we establish boundedness in $h^{p}_{\rho}(\omega)$ of quasi-Banach-valued sublinear operators.

Article information

Source
Illinois J. Math., Volume 60, Number 3-4 (2016), 687-738.

Dates
Received: 16 May 2016
Revised: 6 June 2017
First available in Project Euclid: 22 September 2017

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1506067287

Digital Object Identifier
doi:10.1215/ijm/1506067287

Mathematical Reviews number (MathSciNet)
MR3705443

Zentralblatt MATH identifier
1376.42029

Subjects
Primary: 42B30: $H^p$-spaces
Secondary: 42B25: Maximal functions, Littlewood-Paley theory 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Citation

Zhu, Hua; Tang, Lin. Weighted local Hardy spaces associated to Schrödinger operators. Illinois J. Math. 60 (2016), no. 3-4, 687--738. doi:10.1215/ijm/1506067287. https://projecteuclid.org/euclid.ijm/1506067287


Export citation

References

  • B. Bongioanni, E. Harboure and O. Salinas, Riesz transforms related to Schrödinger operators acting on $\mathit{BMO}$ type spaces, J. Math. Anal. Appl. 357 (2009), 115–131.
  • B. Bongioanni, E. Harboure and O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 (2011), 563–579.
  • B. Bongioanni, E. Harboure and O. Salinas, Commutators of Riesz transforms related to Schrödinger operators, J. Fourier Anal. Appl. 17 (2011), 115–134.
  • M. Bownik, Anisotropic Hardy spaces and waveletes, Mem. Amer. Math. Soc., vol. 164, Amer. Math. Soc., Providence, RI, 2003.
  • M. Bownik, B. Li, D. Yang and Y. Zhou, Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators, Indiana Univ. Math. J. 57 (2008), 3065–3100.
  • B. H. Qui, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45–62.
  • J. Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, Amer. Math. Soc., Providence, RI, 2000.
  • J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), 329–356.
  • J. Dziubański and J. Zienkiewicz, Hardy space $H^{1}$ associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 (1999), no. 2, 279–296.
  • J. Dziubański and J. Zienkiewicz, $H^{p}$ spaces for Schrödinger operators, Fourier analysis and related topics, Banach Center Publ., vol. 56, Polish Acad. Sci. Inst. Math., Warsaw, 2002, pp. 45–53.
  • J. Dziubański and J. Zienkiewicz, $H^{p}$ spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math. 98 (2003), 5–38.
  • J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
  • F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277.
  • D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27–42.
  • L. Grafakos, Classical and modern Fourier analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004.
  • H. Liu, L. Tang and H. Zhu, Weighted Hardy spaces and $\mathit{BMO}$ spaces associated with Schrödinger operators, Math. Nachr. 285 (2012), 2173–2207.
  • S. Meda, P. Sjögern and M. Vallarino, On the $H^1$–$L^1$ boundedness of operators, Proc. Amer. Math. Soc. 136 (2008), 2921–2931.
  • B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal functions, Trans. Amer. Math. Soc. 165 (1972), 207–226.
  • V. S. Rychkov, Littlewood–Paley theory and function spaces with $A_p^{\mathrm{loc}}$ weights, Math. Nachr. 224 (2001), 145–180. \bid doi=10.1002/1522-2616(200104)224:1<145::AID-MANA145>3.3.CO;2-U,
  • T. Schott, Pseudodifferential operators in function spaces with exponential weights, Math. Nachr. 200 (1999), 119–149.
  • Z. W. Shen, $L^{p}$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513–546.
  • E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, NJ, 1970.
  • E. M. Stein, Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.
  • L. Tang, Weighted local Hardy spaces and their applications, Illinois J. Math. 56 (2012), 453–495.
  • L. Tang, Weighted norm inequalities for pseudo-differential operators with smooth symbols and their commutators, J. Funct. Anal. 262 (2012), 1603–1629.
  • L. Tang, Extrapolation from $A_\infty^{\rho,\infty}$, vector-valued inequalities and applications in the Schrödinger settings, Ark. Mat. 52 (2014), no. 1, 175–202.
  • L. Tang, Weighted norm inequalities for Schrödinger type operators, Forum Math. 27 (2015), no. 4, 2491–2532.
  • M. E. Taylor, Pseudodifferential operators and nonlinear PDE, Progr. Math., vol. 100, Birkhäuser, Boston, 1991.
  • H. Triebel, Theory of function spaces, Birkhäuser, Basel, 1983.
  • H. Triebel, Theory of function spaces II, Birkhäuser, Basel, 1992.
  • D. Yang, D. Yang and Y. Zhou, Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators, Potential Anal. 30 (2009), 271–300.
  • D. Yang and S. Yang, Weighted local Orlicz–Hardy spaces with applications to pseudo-differential operators, Dissertationes Math. (Rozprawy Mat.) 478 (2011), 78 pp.
  • D. Yang and Y. Zhou, Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms, J. Math. Anal. Appl. 339 (2008), 622–635.
  • D. Yang and Y. Zhou, Localized Hardy spaces $H^1$ related to admissible functions on RD-spaces and applications to Schrödinger operators, Trans. Amer. Math. Soc. 363 (2011), 1197–1239.
  • J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton University, 1993.
  • H. Zhu and H. Liu, Weighted estimates for bilinear operators, J. Funct. Spaces 2014 (2014), Article ID \bnumber797956.