Illinois Journal of Mathematics

Sufficient conditions for Strassen’s additivity conjecture

Zach Teitler

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We give a sufficient condition for the strong symmetric version of Strassen’s additivity conjecture: the Waring rank of a sum of forms in independent variables is the sum of their ranks, and every Waring decomposition of the sum is a sum of decompositions of the summands. We give additional sufficient criteria for the additivity of Waring ranks and a sufficient criterion for additivity of cactus ranks and decompositions.

Article information

Source
Illinois J. Math., Volume 59, Number 4 (2015), 1071-1085.

Dates
Received: 26 April 2016
Revised: 2 November 2016
First available in Project Euclid: 27 February 2017

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1488186021

Digital Object Identifier
doi:10.1215/ijm/1488186021

Mathematical Reviews number (MathSciNet)
MR3628301

Zentralblatt MATH identifier
1359.14049

Subjects
Primary: 15A21: Canonical forms, reductions, classification 15A69: Multilinear algebra, tensor products 14N15: Classical problems, Schubert calculus

Citation

Teitler, Zach. Sufficient conditions for Strassen’s additivity conjecture. Illinois J. Math. 59 (2015), no. 4, 1071--1085. doi:10.1215/ijm/1488186021. https://projecteuclid.org/euclid.ijm/1488186021


Export citation

References

  • W. Buczyńska and J. Buczyński, On differences between the border rank and the smoothable rank of a polynomial, Glasg. Math. J. 57 (2015), no. 2, 401–413.
  • W. Buczyńska, J. Buczyński, J. Kleppe and Z. Teitler, Apolarity and direct sum decomposability of polynomials, Michigan Math. J. 64 (2015), no. 4, 675–719.
  • W. Buczyńska, J. Buczyński and Z. Teitler, Waring decompositions of monomials, J. Algebra 378 (2013), 45–57.
  • J. Buczyński and Z. Teitler, Some examples of forms of high rank, Collect. Math. 67 (2016), no. 3, 431–441.
  • E. Carlini, Reducing the number of variables of a polynomial, Algebraic geometry and geometric modeling, Math. Vis., Springer, Berlin, 2006, pp. 237–247.
  • E. Carlini, M. V. Catalisano, L. Chiantini, A. V. Geramita and Y. Woo, Symmetric tensors: rank, Strassen's conjecture and $e$-computability, 2015; available at \arxivurlarXiv:1506.03176 [math.AC].
  • E. Carlini, E. Ventura and C. Guo, Real and complex Waring rank of reducible cubic forms, J. Pure Appl. Algebra 220 (2016), no. 11, 3692–3701.
  • E. Carlini, M. V. Catalisano and L. Chiantini, Progress on the symmetric Strassen conjecture, J. Pure Appl. Algebra 219 (2015), no. 8, 3149–3157.
  • E. Carlini, M. V. Catalisano and A. V. Geramita, The solution to the Waring problem for monomials and the sum of coprime monomials, J. Algebra 370 (2012), 5–14.
  • E. Carlini, M. V. Catalisano and A. Oneto, Waring loci and the Strassen conjecture, 2016; available at \arxivurlarXiv:1605.00384 [math.AG].
  • P. Comon, G. Golub, L.-H. Lim and B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1254–1279.
  • A. De Paris, A proof that the maximum rank for ternary quartics is seven, Matematiche (Catania) 70 (2015), no. 2, 3–18.
  • A. V. Geramita, Inverse systems of fat points: Waring's problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals, The Curves Seminar at Queen's, vol. X (Kingston, ON, 1995), Queen's Papers in Pure and Appl. Math., vol. 102, Queen's Univ., Kingston, ON, 1996, pp. 2–114.
  • A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999. Appendix C by Iarrobino and Steven L. Kleiman.
  • J. Kleppe, Representing a homogenous polynomial as a sum of powers of linear forms, Master's thesis, University of Oslo, 1999.
  • J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, vol. 128, Am. Math. Soc., Providence, RI, 2012.
  • J. M. Landsberg and Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), no. 3, 339–366.
  • J. Miller, Earliest Known Uses of Some of the Words of Mathematics (C), 2013; available at http://jeff560.tripod.com/c.html.
  • S. Mukai, Fano $3$-folds, Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., vol. 179, Cambridge University Press, Cambridge, 1992, pp. 255–263.
  • L. Oeding, Border ranks of monomials, 2016; available at \arxivurlarXiv:1608.02530 [math.AG].
  • E. Pascal, Repertorium der Höheren Mathematik, Bd. 2: Geometrie, Teubner, Leipzig, 1910.
  • K. Ranestad and F.-O. Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147–181.
  • K. Ranestad and F.-O. Schreyer, On the rank of a symmetric form, J. Algebra 346 (2011), 340–342.
  • B. Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 96 (1992), no. 463, viii$+$155.
  • V. Strassen, Vermeidung von Divisionen, J. Reine Angew. Math. 264 (1973), 184–202.
  • Z. Teitler, Geometric lower bounds for generalized ranks, 2014; available at \arxivurlarXiv:1406.5145 [math.AG].