Illinois Journal of Mathematics

Metrics with conic singularities and spherical polygons

Alexandre Eremenko, Andrei Gabrielov, and Vitaly Tarasov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A spherical $n$-gon is a bordered surface homeomorphic to a closed disk, with $n$ distinguished boundary points called corners, equipped with a Riemannian metric of constant curvature $1$, except at the corners, and such that the boundary arcs between the corners are geodesic. We discuss the problem of classification of these polygons and enumerate them in the case that two angles at the corners are not multiples of $\pi$. The problem is equivalent to classification of some second order linear differential equations with regular singularities, with real parameters and unitary monodromy.

Article information

Source
Illinois J. Math., Volume 58, Number 3 (2014), 739-755.

Dates
Received: 8 May 2014
Revised: 31 March 2015
First available in Project Euclid: 9 September 2015

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1441790388

Digital Object Identifier
doi:10.1215/ijm/1441790388

Mathematical Reviews number (MathSciNet)
MR3395961

Zentralblatt MATH identifier
06499620

Subjects
Primary: 30C20: Conformal mappings of special domains 34M03: Linear equations and systems

Citation

Eremenko, Alexandre; Gabrielov, Andrei; Tarasov, Vitaly. Metrics with conic singularities and spherical polygons. Illinois J. Math. 58 (2014), no. 3, 739--755. doi:10.1215/ijm/1441790388. https://projecteuclid.org/euclid.ijm/1441790388


Export citation

References

  • Q. Chen, Y. Wu and B. Xu, Conformal metrics with constant curvature one and finitely many conical singularities on compact Riemann surfaces, Pacific J. Math. 273 (2015), no. 1, 75–100.
  • J. Dorfmeister and M. Schuster, Construction of planar CMC 4-noids of genus $g=0$, JP J. Geom. Topol 6 (2006), no. 3, 319–381.
  • J. Dorfmeister and J.-H. Eschenburg, Real Fuchsian equations and constant mean curvature, Mat. Contemp. 35 (2008), 1–25.
  • A. Eremenko, Metrics of positive curvature with conic singularities on the sphere, Proc. Amer. Math. Soc. 132 (2004), 3349–3355.
  • A. Eremenko and A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. of Math. (2) 155 (2002), 105–129.
  • A. Eremenko and A. Gabrielov, Elementary proof of the B. and M. Shapiro conjecture for rational functions, Notions of positivity and the geometry of polynomials, Trends in mathematics, Springer, Basel, 2011, pp. 167–178.
  • A. Eremenko and A. Gabrielov, Counterexamples to pole placement by static output feedback, Linear Algebra Appl. 351–352 (2002), 211–218.
  • A. Eremenko, A. Gabrielov, M. Shapiro and A. Vainshtein, Rational functions and real Schubert calculus, Proc. Amer. Math. Soc. 134 (2006), no. 4, 949–957.
  • L. Ford, Automorphic functions, McGraw Hill, New York, 1929.
  • S. Fujimori, Y. Kawakami, M. Kokubu, W. Rossman, M. Umehara and K. Yamada, CMC-1 trinoids in hyperbolic 3-space and metrics of constant curvature one with conical singularities on the 2-sphere, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), 144–149.
  • M. Gaudin, La fonction d'onde de Bethe, Masson, Paris, 1983.
  • L. Goldberg, Catalan numbers and branched coverings by the Riemann sphere, Adv. Math. 85 (1991), no. 2, 129–144.
  • W. Golubew, Vorlesungen über Differentialgleichungen im Komplexen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1958.
  • J. Harris, Algebraic geometry. A first course, Springer, New York, 1995.
  • M. Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1–60.
  • E. Hilb, Über Kleinsche Theoreme in der Theorie der linearen Differentialgleichingen, Ann. of Math. (2) 66 (1908), 215–257.
  • C. Hodgson and I. Rivin, A characterization of compact convex polyhedra in hyperbolic 3-space, Invent. Math. 111 (1993), no. 1, 77–111.
  • F. Klein, Ueber die Nullstellen der hypergeometrischen Reihe, Math. Ann. 37 (1890), 573–590.
  • F. Klein, Bemerkungen zur Theorie der linearen Differentialgleichungen zweiter Ordnung, Math. Ann. 64 (1907), 176–196.
  • F. Luo and G. Tian, Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1119–1129.
  • R. McOwen, Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc. 103 (1988), 222–224.
  • E. Mukhin, V. Tarasov and A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, Ann. of Math. (2) 170 (2009), no. 2, 863–881.
  • E. Mukhin, E. Tarasov and A. Varchenko, On reality property of Wronski maps, Confluentes Math. 1 (2009), no. 2, 225–247.
  • E. Mukhin, E. Tarasov and A. Varchenko, Schubert calculus and representations of the general linear group, J. Amer. Math. Soc. 22 (2009), no. 4, 909–940.
  • E. Picard, De l'equation $\Delta u=ke^u$ sur une surface de Riemann fermée, J. Math. Pures Appl. 9 (1893), 273–292.
  • E. Picard, De l'equation $\Delta u=e^u$, J. Math. Pures Appl. 4 (1898), 313–316.
  • E. Picard, De l'integration de l'equation $\Delta u=e^u$ sur une surface de Reimann fermée, J. Reine Angew. Math. 130 (1905), 243–258.
  • E. Picard, Quelques applications analytiques de la théorie des courbes et des surfaces algébriques, Gauthier-Villars, Paris, 1931.
  • H. Poincaré, Les fonctions Fuchsiennes et l'équation $\Delta u=e^u$, J. Math. Pures Appl. 4 (1898), 137–230.
  • A. Ronveaux, ed., Heun's differential equations, Oxford Univ. Press, New York, 1995.
  • H. P. de Saint-Gervais, Uniformisation des surfaces de Riemann, ENS Éditions, Lyon, 2010.
  • I. Scherbak, Rational functions with prescribed critical points, Geom. Funct. Anal. 12 (2002), no. 6, 1365–1380.
  • V. I. Smirnov, The problem of inversion of a linear differential equation of second order with four singularities, Petrograd, 1918 (Russian). Reproduced in V. I. Smirnov, Selected works, vol. 2, Analytic theory of ordinary differential equations, St. Peterburg University, St. Peterburg, 1996.
  • V. Smirnoff, Sur les équations différentialles linéaires du second ordre et la théorie des fonctions automorphes, Bull. Sci. Math. 45 (1921), 93–120, 126–135.
  • M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), 793–821.
  • M. Umehara and K. Yamada, Metrics of constant curvature 1 with three conical singularities on the 2-sphere, Illinois J. Math. 44 (2000), no. 1, 72–94.
  • M. Yoshida, A naive-topological study of the contiguity relations for hypergeometric function, PDEs, submanifolds and affine differential geometry, Polish Acad. Sci., Warsaw, 2005, pp. 257–268.