Illinois Journal of Mathematics

Hopf algebras and quadratic forms

P. Cassou-Noguès, T. Chinburg, B. Morin, and M. J. Taylor

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Following Serre’s initial work, a number of authors have considered twists of quadratic forms on a scheme $Y$ by torsors of a finite group $G$, together with formulas for the Hasse–Witt invariants of the twisted form. In this paper, we take the base scheme $Y$ to be affine and consider non-constant group schemes $G$. Our main result describes these twists by a simple and explicit formula. There is a fundamental new feature in this case—in that the torsor may now be ramified over $Y$. The natural framework for handling the case of a non-constant group scheme over the affine base is provided by the quadratic theory of Hopf-algebras.

Article information

Source
Illinois J. Math., Volume 58, Number 2 (2014), 413-442.

Dates
Received: 17 October 2013
Revised: 29 January 2015
First available in Project Euclid: 7 July 2015

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1436275492

Digital Object Identifier
doi:10.1215/ijm/1436275492

Mathematical Reviews number (MathSciNet)
MR3367657

Zentralblatt MATH identifier
1335.11029

Subjects
Primary: 11E81: Algebraic theory of quadratic forms; Witt groups and rings [See also 19G12, 19G24] 16W30

Citation

Cassou-Noguès, P.; Chinburg, T.; Morin, B.; Taylor, M. J. Hopf algebras and quadratic forms. Illinois J. Math. 58 (2014), no. 2, 413--442. doi:10.1215/ijm/1436275492. https://projecteuclid.org/euclid.ijm/1436275492


Export citation

References

  • E. Bayer-Fluckiger and H. W. Lenstra, Forms in odd degree extensions and self-dual normal bases, Amer. J. Math. 112 (1990), no. 3, 359–373.
  • L. N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, Mathematical Survey and Monographs, vol. 80, Amer. Math. Soc., Providence, RI, 2000.
  • T. Chinburg, B. Erez, G. Pappas and M. J. Taylor, Tame actions of group schemes: Integrals and slices, Duke Math. J. 82 (1996), no. 2, 269–308.
  • P. Cassou-Noguès, B. Erez and M. J. Taylor, On Fröhlich twisted bundles, Proceedings of the St. Petersburg Mathematical Society, vol. XI, Amer. Math. Soc. Transl. Ser. 2, vol. 218, Amer. Math. Soc., Providence, RI, 2006, pp. 87–100.
  • P. Cassou-Noguès, T. Chinburg, B. Morin and M. J. Taylor, The classifying topos of a group scheme and invariants of symmetric bundles, Proc. Lond. Math. Soc. (3) 109 (2014), no. 5, 1093–1136.
  • M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Avec un appendice Corps de classes local par Michiel Hazewinkel, North-Holland, Amsterdam, 1970.
  • A. Fröhlich, Orthogonal representations of Galois groups, Stiefel–Whitney classes and Hasse–Witt invariants, J. Reine Angew. Math. 360 (1985), 84–123.
  • M. Knebusch, Symmetric bilinear forms over algebraic varieties, Conference on quadratic forms–-1976 (G. Orzech, ed.), Queen's Papers in Pure and Appl. Math., vol. 46, Queen's University, Kingston, ON, 1977, pp. 103–283.
  • S. Maclane, Homology, Die Grundlehren der Math. Wiss., vol. 114, Springer-Verlag, Berlin, 1967.
  • J. S. Milne, Etale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, NJ, 1980.
  • B. Pareigis, When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588–596.
  • M. Raynaud, Schémas en groupes de type $(p,\ldots,p)$, Bull. Soc. Math. France 102 (1974), 241–280.
  • H.-J. Schneider, Cartan matrix of liftable finite group schemes, Comm. Algebra 5 (1977), no. 8, 795–819.
  • J.-P. Serre, L'invariant de Witt de la forme $\operatorname{Tr}(x^2)$, Comment. Math. Helv. 59 (1984), no. 4, 651–676.
  • M. Sweedler, Hopf algebras, W.A. Benjamin, New York, 1969.
  • M. Taylor, Hopf orders and Galois module structure, DMV Seminar, vol. 18, Birkhäuser, Basel, 1992.
  • W. C. Waterhouse, Introduction to affine group schemes, Springer-Verlag, New York, 1979.