Illinois Journal of Mathematics

Amenability for Fell bundles over groupoids

Aidan Sims and Dana P. Williams

Full-text: Open access

Abstract

We establish conditions under which the universal and reduced norms coincide for a Fell bundle over a groupoid. Specifically, we prove that the full and reduced $C^{*}$-algebras of any Fell bundle over a measurewise amenable groupoid coincide, and also that for a groupoid $G$ whose orbit space is $T_{0}$, the full and reduced algebras of a Fell bundle over $G$ coincide if the full and reduced algebras of the restriction of the bundle to each isotropy group coincide.

Article information

Source
Illinois J. Math., Volume 57, Number 2 (2013), 429-444.

Dates
First available in Project Euclid: 19 August 2014

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1408453589

Digital Object Identifier
doi:10.1215/ijm/1408453589

Mathematical Reviews number (MathSciNet)
MR3263040

Zentralblatt MATH identifier
1297.46047

Subjects
Primary: 46L55: Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]

Citation

Sims, Aidan; Williams, Dana P. Amenability for Fell bundles over groupoids. Illinois J. Math. 57 (2013), no. 2, 429--444. doi:10.1215/ijm/1408453589. https://projecteuclid.org/euclid.ijm/1408453589


Export citation

References

  • C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies de L'Enseignement Mathématique [Monographs of L'Enseignement Mathématique], vol. 36, L'Enseignement Mathématique, Geneva, 2000. With a foreword by Georges Skandalis and Appendix B by E. Germain.
  • V. Deaconu, A. Kumjian, D. Pask and A. Sims, Graphs of $C^*$-correspondences and Fell bundles, Indiana Univ. Math. J. 59 (2011), 1687–1735.
  • R. Exel, Amenability for Fell bundles, J. Reine Angew. Math. 492 (1997), 41–73.
  • P. Hahn, Haar measure for measure groupoids, Trans. Amer. Math. Soc. 242 (1978), 1–33.
  • M. Ionescu and D. P. Williams, A classic Morita equivalence result for Fell bundle $C^\ast $-algebras, Math. Scand. 108 (2011), no. 2, 251–263.
  • M. Ionescu and D. P. Williams, Remarks on the ideal structure of Fell bundle $C^*$-algebras, Houston J. Math. 38 (2012), 1241–1260.
  • A. Kumjian and D. Pask, Higher rank graph $C^\ast$-algebras, New York J. Math. 6 (2000), 1–20.
  • E.-K. M. Moutuou and J.-L. Tu, Equivalence of Fell systems and their reduced $C^*$-algebras, preprint, 2011. Available at \arxivurlarXiv:1101.1235v1.
  • P. S. Muhly, Coordinates in operator algebra, CMBS Conference Lecture Notes (Texas Christian University 1990), unpublished manuscript, 1999.
  • P. S. Muhly and D. P. Williams, Equivalence and disintegration theorems for Fell bundles and their $C\sp*$-algebras, Dissertationes Math. (Rozprawy Mat.) 456 (2008), 1–57.
  • P. S. Muhly and D. P. Williams, Renault's equivalence theorem for groupoid crossed products, NYJM Monographs, vol. 3, State University of New York University at Albany, Albany, NY, 2008.
  • I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace $C^*$-algebras, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998.
  • A. Ramsay, The Mackey–Glimm dichotomy for foliations and other Polish groupoids, J. Funct. Anal. 94 (1990), no. 2, 358–374.
  • J. Renault, A groupoid approach to $C^{*}$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, New York, 1980.
  • J. Renault, The ideal structure of groupoid crossed product $C^{*}$-algebras, J. Operator Theory 25 (1991), 3–36.
  • A. Sims and D. P. Williams, An equivalence theorem for reduced Fell bundle $C^*$-algebras, New York J. Math. 19 (2013), 159–178.
  • A. Sims and D. P. Williams, Renault's equivalence theorem for reduced groupoid $C^*$-algebras, J. Operator Theory 68 (2012), no. 1, 223–239.
  • H. Takai, On a duality for crossed products of $C^{*}$-algebras, J. Funct. Anal. 19 (1975), 25–39.
  • D. P. Williams, Crossed products of $C{\sp\ast}$-algebras, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007.
  • G. Zeller-Meier, Produits croisés d'une $C\sp{\ast} $-algèbre par un groupe d'automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101–239.