Illinois Journal of Mathematics

Rigidity of gradient almost Ricci solitons

A. Barros, R. Batista, and E. Ribeiro Jr.

Full-text: Open access

Abstract

In this paper, we show that either, a Euclidean space $\mathbb{R}^{n}$, or a standard sphere $\mathbb{S}^{n}$, is the unique manifold with nonnegative scalar curvature which carries a structure of a gradient almost Ricci soliton, provided this gradient is a non trivial conformal vector field. Moreover, in the spherical case the field is given by the first eigenfunction of the Laplacian. Finally, we shall show that a compact locally conformally flat almost Ricci soliton is isometric to Euclidean sphere $\mathbb{S}^{n}$ provided an integral condition holds.

Article information

Source
Illinois J. Math., Volume 56, Number 4 (2012), 1267-1279.

Dates
First available in Project Euclid: 6 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1399395831

Digital Object Identifier
doi:10.1215/ijm/1399395831

Mathematical Reviews number (MathSciNet)
MR3231482

Zentralblatt MATH identifier
1290.53053

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.) 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20] 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]
Secondary: 53C65: Integral geometry [See also 52A22, 60D05]; differential forms, currents, etc. [See mainly 58Axx]

Citation

Barros, A.; Batista, R.; Ribeiro Jr., E. Rigidity of gradient almost Ricci solitons. Illinois J. Math. 56 (2012), no. 4, 1267--1279. doi:10.1215/ijm/1399395831. https://projecteuclid.org/euclid.ijm/1399395831


Export citation

References

  • A. Barros and E. Ribeiro \bsuffixJr., Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc. 140 (2012), 1033–1040.
  • X. Cao, Compact gradient shrinking Ricci solitons with positive curvature operator, J. Geom. Anal. 17 (2007), 425–433.
  • G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012), 751–756.
  • R. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry (Cambridge, MA, 1993), vol. 2, International Press, Cambridge, MA, 1995, pp. 7–136.
  • T. Nagano and K. Yano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. 69 (1959), 451–461.
  • M. Obata and K. Yano, Conformal changes of Riemannian metrics, J. Differential Geom. 4 (1970), 53–72.
  • G. Perelman, The entropy formula for the Ricci flow and its geometric applications, prerpint, 2002, available at \arxivurlarXiv:math/0211159.
  • S. Pigola, M. Rigoli, M. Rimoldi and A. Setti, Ricci almost solitons, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5) 10 (2011), 757–799.
  • Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251–275.
  • K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.