Illinois Journal of Mathematics

Flippable tilings of constant curvature surfaces

François Fillastre and Jean-Marc Schlenker

Full-text: Open access

Abstract

We call “flippable tilings” of a constant curvature surface a tiling by “black” and “white” faces, so that each edge is adjacent to two black and two white faces (one of each on each side), the black face is forward on the right side and backward on the left side, and it is possible to “flip” the tiling by pushing all black faces forward on the left-hand side and backward on the right-hand side. Among those tilings, we distinguish the “symmetric” ones, for which the metric on the surface does not change under the flip. We provide some existence statements, and explain how to parameterize the space of those tilings (with a fixed number of black faces) in different ways. For instance, one can glue the white faces only, and obtain a metric with cone singularities which, in the hyperbolic and spherical case, uniquely determines a symmetric tiling. The proofs are based on the geometry of polyhedral surfaces in 3-dimensional spaces modeled either on the sphere or on the anti-de Sitter space.

Article information

Source
Illinois J. Math., Volume 56, Number 4 (2012), 1213-1256.

Dates
First available in Project Euclid: 6 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1399395829

Digital Object Identifier
doi:10.1215/ijm/1399395829

Mathematical Reviews number (MathSciNet)
MR3231480

Zentralblatt MATH identifier
1296.52011

Subjects
Primary: 52B70: Polyhedral manifolds
Secondary: 52A15: Convex sets in 3 dimensions (including convex surfaces) [See also 53A05, 53C45] 53C50: Lorentz manifolds, manifolds with indefinite metrics

Citation

Fillastre, François; Schlenker, Jean-Marc. Flippable tilings of constant curvature surfaces. Illinois J. Math. 56 (2012), no. 4, 1213--1256. doi:10.1215/ijm/1399395829. https://projecteuclid.org/euclid.ijm/1399395829


Export citation

References

  • R. Aiyama, K. Akutagawa and T. Wan, Minimal maps between the hyperbolic discs and generalized Gauss maps of maximal surfaces in the anti-de Sitter $3$-space, Tohoku Math. J. (2) 52 (2000), no. 3, 415–429.
  • L. Andersson, T. Barbot, R. Benedetti, F. Bonsante, W. Goldman, F. Labourie, K. Scannell and J.-M. Schlenker, Notes on: “Lorentz spacetimes of constant curvature”, [Geom. Dedicata 126 (2007), 3–45; MR 2328921] by G. Mess, Geom. Dedicata 126 (2007), 47–70.
  • A. D. Alexandrov, Convex polyhedra, Springer Monographs in Mathematics, Springer, Berlin, 2005. Translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky, with comments and bibliography by V. A. Zalgaller and appendices by L. A. Shor and Yu. A. Volkov.
  • T. Barbot, F. Béguin and A. Zeghib, Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on $\mathrm{AdS}_3$, Geom. Dedicata 126 (2007), 71–129.
  • J. Bertrand, Prescription of Gauss curvature using optimal mass transport, preprint, 2010.
  • F. Bonsante, K. Krasnov and J.-M. Schlenker, Multi-black holes and earthquakes on Riemann surfaces with boundaries, Int. Math. Res. Not. IMRN 3 (2011), 487–552.
  • F. Bonsante and J.-M. Schlenker, AdS manifolds with particles and earthquakes on singular surfaces, Geom. Funct. Anal. 19 (2009), no. 1, 41–82.
  • F. Bonsante and J.-M. Schlenker, Maximal surfaces and the universal Teichmüller space, Invent. Math. 182 (2010), no. 2, 279–333.
  • F. Bonsante and J.-M. Schlenker, Fixed points of compositions of earthquakes, Duke Math. J. 161 (2012), no. 6, 1011–1054.
  • Y. Cho, Trigonometry in extended hyperbolic space and extended de Sitter space, Bull. Korean Math. Soc. 46 (2009), no. 6, 1099–1133.
  • M. P. do Carmo and F. W. Warner, Rigidity and convexity of hypersurfaces in spheres, J. Differential Geometry 4 (1970), 133–144.
  • F. Fillastre, Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 1, 163–195.
  • F. Fillastre, Fuchsian polyhedra in Lorentzian space-forms, Math. Ann. 350 (2011), no. 2, 417–453.
  • F. Fillastre, Fuchsian convex bodies: Basics of Brunn–Minkowski theory, Geom. Funct. Anal. 23 (2013), no. 1, 295–333.
  • F. Guéritaud, Pavages flippés euclidiens, preprint.
  • C. W. Ho, A note on proper maps, Proc. Amer. Math. Soc. 51 (1975), 237–241.
  • I. Iskhakov, On hyperbolic surfaces tessellations and equivariant spacelike convex polyhedral surfaces in Minkowski space, Ph.D. thesis, Ohio State University, 2000.
  • J. Jost, Compact Riemann surfaces, An introduction to contemporary mathematics, 3rd ed., Springer, Berlin, 2006.
  • K. Krasnov and J.-M. Schlenker, Minimal surfaces and particles in $3$-manifolds, Geom. Dedicata 126 (2007), 187–254.
  • F. Luo and G. Tian, Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1119–1129.
  • G. Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007), 3–45.
  • I. Pak, Lectures on discrete and polyhedral geometry, to be published, preliminary version available at author's web page at www.math.ucla.edu/~pak/geompol8.pdf.
  • J. Richter-Gebert, Realization spaces of polytopes, Lecture Notes in Mathematics, vol. 1643, Springer, Berlin, 1996.
  • I. Rivin and C. D. Hodgson, A characterization of compact convex polyhedra in hyperbolic $3$-space, Invent. Math. 111 (1993), no. 1, 77–111.
  • J.-M. Schlenker, Hyperbolic manifolds with polyhedral boundary, available at \arxivurlarXiv:math.GT/0111136.
  • J.-M. Schlenker, Métriques sur les polyèdres hyperboliques convexes, J. Differential Geom. 48 (1998), no. 2, 323–405.
  • J.-M. Schlenker, Des immersions isométriques de surfaces aux variétés hyperboliques à bord convexe, Séminaire de Théorie Spectrale et Géométrie, vol. 21, Année 2002–2003, Sémin. Théor. Spectr. Géom., vol. 21, Univ. Grenoble I, Saint-Martin-d'Hères, 2003, pp. 165–216.
  • J.-M. Schlenker, Small deformations of polygons and polyhedra, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2155–2189.
  • W. P. Thurston, The geometry and topology of three-manifolds, recent version of the 1980 notes, available at library.msri.org/books/gt3m/, 1997.
  • M. Troyanov, Metrics of constant curvature on a sphere with two conical singularities, Differential geometry (Peñíscola, 1988), Lecture Notes in Math., vol. 1410, Springer, Berlin, 1989, pp. 296–306.
  • M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793–821.
  • M. Troyanov, Surfaces riemanniennes à singularités simples, Differential geometry: Geometry in mathematical physics and related topics (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 619–628.
  • J. Van Heijenoort, On locally convex manifolds, Comm. Pure Appl. Math. 5 (1952), 223–242.