Illinois Journal of Mathematics

Completely $(q,p)$-mixing maps

Javier Alejandro Chávez-Domínguez

Full-text: Open access


Several important results for $p$-summing operators, such as Pietsch’s composition formula and Grothendieck’s theorem, share the following form: there is an operator $T$ such that $S\circ T$ is $p$-summing whenever $S$ is $q$-summing. Such operators were called $(q,p)$-mixing by Pietsch, who studied them systematically. In the operator space setting, G. Pisier’s completely $p$-summing maps correspond to the $p$-summing operators between Banach spaces. A natural modification of the definition yields the notion of completely $(q,p)$-mixing maps, already introduced by K. L. Yew, which is the subject of this paper. Some basic properties of these maps are proved, as well as a couple of characterizations. A generalization of Yew’s operator space version of the Extrapolation theorem is obtained, via an interpolation-style theorem relating different completely $(q,p)$-mixing norms. Finally, some composition theorems for completely $p$-summing maps are proved.

Article information

Illinois J. Math., Volume 56, Number 4 (2012), 1169-1183.

First available in Project Euclid: 6 May 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L07: Operator spaces and completely bounded maps [See also 47L25]
Secondary: 47L25: Operator spaces (= matricially normed spaces) [See also 46L07] 47B10: Operators belonging to operator ideals (nuclear, p-summing, in the Schatten-von Neumann classes, etc.) [See also 47L20] 46L52: Noncommutative function spaces 47L20: Operator ideals [See also 47B10]


Chávez-Domínguez, Javier Alejandro. Completely $(q,p)$-mixing maps. Illinois J. Math. 56 (2012), no. 4, 1169--1183. doi:10.1215/ijm/1399395827.

Export citation


  • J. A. Chávez-Domínguez, Lipschitz $(q,p)$-mixing operators, Proc. Amer. Math. Soc. 140 (2012), 3101–3115.
  • A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, vol. 176, North-Holland, Amsterdam, 1993.
  • J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
  • A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79.
  • M. Junge and J. Parcet, Maurey's factorization theory for operator spaces, Math. Ann. 347 (2010), no. 2, 299–338.
  • M. Junge, Factorization theory for spaces of operators, Habilitation thesis, Kiel, 1996.
  • H. H. Lee, Type and cotype of operator spaces, Studia Math. 185 (2008), no. 3, 219–247.
  • B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L^{p}$, Astérisque 11 (1974), 1–163.
  • T. Oikhberg, Completely bounded and ideal norms of multiplication operators and Schur multipliers, Integral Equations Operator Theory 66 (2010), no. 3, 425–440.
  • A. Pietsch, Absolut $p$-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/1967), 333–353.
  • A. Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland, Amsterdam, 1980. Translated from German by the author.
  • G. Pisier, Non-commutative vector valued $L_p$-spaces and completely $p$-summing maps, Astérisque 247 (1998), 1–131.
  • G. Pisier, Introduction to operator space theory, London Mathematical Society Lecture Note Series, vol. 294, Cambridge University Press, Cambridge, 2003.
  • A. Persson and A. Pietsch, $p$-nukleare und $p$-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19–62.
  • P. Saphar, Applications $p$ décomposantes et $p$ absolument sommantes, Israel J. Math. 11 (1972), 164–179.
  • K. L. Yew, On some classical Banach space concepts in operator space theory, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2005.
  • K. L. Yew, Completely $p$-summing maps on the operator Hilbert space $OH$, J. Funct. Anal. 255 (2008), no. 6, 1362–1402.