Illinois Journal of Mathematics

Ergodicity and mixing of W*-dynamical systems in terms of joinings

Rocco Duvenhage

Full-text: Open access


We study characterizations of ergodicity, weak mixing and strong mixing of W*-dynamical systems in terms of joinings and subsystems of such systems. Ergodic joinings and Ornstein’s criterion for strong mixing are also discussed in this context.

Article information

Illinois J. Math., Volume 54, Number 2 (2010), 543-566.

First available in Project Euclid: 14 October 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L55: Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]


Duvenhage, Rocco. Ergodicity and mixing of W*-dynamical systems in terms of joinings. Illinois J. Math. 54 (2010), no. 2, 543--566. doi:10.1215/ijm/1318598672.

Export citation


  • D. Avitzour, Noncommutative topological dynamics. II, Trans. Amer. Math. Soc. 282 (1984), 121–135.
  • C. Beyers, R. Duvenhage and A. Ströh, The Szemerédi property in ergodic W*-dynamical systems, J. Operator Theory 64 (2010), 35–67.
  • O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics 1, 2nd ed., Springer-Verlag, New York, 1987.
  • F. Combes, Sur les faces d'une C*-algèbre, Bull. Sci. Math. (2) 93 (1969), 37–62.
  • T. de la Rue, An introduction to joinings in ergodic theory, Discrete Contin. Dyn. Syst. 15 (2006), 121–142.
  • R. Duvenhage, Joinings of W*-dynamical systems, J. Math. Anal. Appl. 343 (2008), 175–181.
  • R. Duvenhage, Bergelson's theorem for weakly mixing C*-dynamical systems, Studia Math. 192 (2009), 235–257.
  • F. Fidaleo, An ergodic theorem for quantum diagonal measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 (2009), 307–320.
  • H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49.
  • E. Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003.
  • P. R. Halmos, On automorphisms of compact groups, Bull. Amer. Math. Soc. 49 (1943), 619–624.
  • U. Krengel, Ergodic theorems, Walter de Gruyter & Co., Berlin, 1985.
  • J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4) 33 (2000), 837–934.
  • J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), 68–92.
  • M. Lemańczyk, Introduction to ergodic theory from the point of view of spectral theory, Lecture Notes on the Tenth Kaisk Mathematics Workshop (G. H. Choe, ed.), Korea Advanced Institute of Science and Technology, Math. Res. Center, Taejon, Korea, 1995.
  • G. J. Murphy, C*-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990.
  • C. P. Niculescu, A. Ströh and L. Zsidó, Noncommutative extensions of classical and multiple recurrence theorems, J. Operator Theory 50 (2003), 3–52.
  • D. S. Ornstein, On the root problem in ergodic theory, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, University of California Press, Berkeley, 1972, pp. 347–356.
  • K. Petersen, Ergodic theory, Cambridge University Press, Cambridge, 1983.
  • W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York–London, 1962.
  • D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. Analyse Math. 35 (1979), 97–122.
  • J.-L. Sauvageot and J.-P. Thouvenot, Une nouvelle définition de l'entropie dynamique des systèmes non commutatifs, Comm. Math. Phys. 145 (1992), 411–423.
  • E. Størmer, Spectra of ergodic transformations, J. Funct. Anal. 15 (1974), 202–215.
  • Ş. Strătilă, Modular theory in operator algebras, Editura Academiei Republicii Socialiste România, Bucharest, Abacus Press, Tunbridge Wells, 1981.
  • M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Operator Algebras and Non-commutative Geometry, vol. 6, Springer-Verlag, Berlin, 2003.
  • S. Vaes, Locally compact quantum groups, Ph.D. thesis, Katholieke Universiteit Leuven, 2001.
  • A. van Daele, Locally compact quantum groups. A von Neumann algebra approach: available at arXiv:math/0602212v1.