Illinois Journal of Mathematics

The maximal pure spectrum of an Abelian group

R. Göbel and B. Goldsmith

Full-text: Open access

Abstract

This paper introduces the notion of the maximal pure spectrum of an Abelian group—this is the set of isomorphism classes of maximal proper pure subgroups—and focuses on the situation in which this spectrum is small. The converse situation is also examined i.e., given a collection of isomorphism classes of groups, can one find an Abelian group having precisely this collection as its maximal pure spectrum. Finally, it is shown that in some familiar situations, the answers to these questions may be undecidable.

Article information

Source
Illinois J. Math., Volume 53, Number 3 (2009), 817-832.

Dates
First available in Project Euclid: 4 October 2010

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1286212917

Digital Object Identifier
doi:10.1215/ijm/1286212917

Mathematical Reviews number (MathSciNet)
MR2727356

Zentralblatt MATH identifier
1210.20052

Subjects
Primary: 20K27: Subgroups 20K20: Torsion-free groups, infinite rank 20K10: Torsion groups, primary groups and generalized primary groups

Citation

Göbel, R.; Goldsmith, B. The maximal pure spectrum of an Abelian group. Illinois J. Math. 53 (2009), no. 3, 817--832. doi:10.1215/ijm/1286212917. https://projecteuclid.org/euclid.ijm/1286212917


Export citation

References

  • R. A. Beaumont and R. S. Pierce, Some invariants of $p$-groups, Michigan Math. J. 11 (1964), 137–149.
  • D. L. Boyer, A note on a problem of Fuchs, Pacific J. Math. 10 (1960), 1147.
  • A. L. S. Corner, Groups whose maximal pure subgroups are all $\cong \Sigma^* \mathbb{Z}$, unpublished, undated typed manuscript.
  • A. L. S. Corner, R. Göbel and B. Goldsmith, On torsion-free Crawley groups, Quart. J. Math. Oxford 57 (2006), 183–192.
  • K. Eda, A generalized direct product of abelian groups, J. Algebra 92 (1985), 33–43.
  • P. Eklof, Homological algebra and set theory, Trans. Amer. Math. Soc. 227 (1977), 207–225.
  • P. Eklof and A. Mekler, Almost free modules, set-theoretic methods, North-Holland, Amsterdam, 2002.
  • L. Fuchs, Infinite Abelian groups, Vol. I, Academic Press, New York, 1970.
  • L. Fuchs, Infinite Abelian groups, Vol. II, Academic Press, New York, 1974.
  • B. Goldsmith, Essentially-rigid families of Abelian $p$-groups, J. London Math. Soc. (2) 18 (1978), 70–74.
  • P. A. Griffith, Infinite abelian group theory, Univ. Chicago Press, Chicago, 1970.
  • C. Megibben, $\omega_1$-Separable $p$-groups, Abelian Group Theory (R. Göbel and E. Walker, eds.), Gordon and Breach, New York, 1987, pp. 117–136.
  • R. Nunke, On direct products of infinite cyclic groups, Proc. Amer. Math. Soc. 13 (1962), 66–71.
  • R. Nunke, Slender groups, Acta Sci. Math. (Szeged) 23 (1962), 67–73.