Illinois Journal of Mathematics

Hardy spaces of operator-valued analytic functions

Zeqian Chen

Full-text: Open access

Abstract

We are concerned with Hardy and BMO spaces of operator-valued functions analytic in the unit disk of $\mathbb{C}$. In the case of the Hardy space, we involve the atomic decomposition since the usual argument in the scalar setting is not suitable. Several properties (the Garsia-norm equivalent theorem, Carleson measure, and so on) of BMOA spaces are extended to the operator-valued setting. Then, the operator-valued $\mathrm{H}^1$-BMOA duality theorem is proved. Finally, by the $\mathrm{H}^1$-BMOA duality we present the Lusin area integral and Littlewood-Paley $g$-function characterizations of the operator-valued analytic Hardy space.

Article information

Source
Illinois J. Math., Volume 53, Number 1 (2009), 303-324.

Dates
First available in Project Euclid: 22 January 2010

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1264170852

Digital Object Identifier
doi:10.1215/ijm/1264170852

Mathematical Reviews number (MathSciNet)
MR2584948

Zentralblatt MATH identifier
1197.46033

Subjects
Primary: 46E40: Spaces of vector- and operator-valued functions 32A37: Other spaces of holomorphic functions (e.g. bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA)) [See also 46Exx]

Citation

Chen, Zeqian. Hardy spaces of operator-valued analytic functions. Illinois J. Math. 53 (2009), no. 1, 303--324. doi:10.1215/ijm/1264170852. https://projecteuclid.org/euclid.ijm/1264170852


Export citation

References

  • A. Baernstein II, Analytic functions of bounded mean oscillation, Aspects of Contemporary Complex Analysis, Academic Press, London–New York, 1980, pp. 3–36.
  • O. Blasco, Hardy spaces of vector-valued functions: Duality, Trans. Amer. Math. Soc. 308 (1988), 495–507.
  • J. Bourgain, Vector-valued singular integrals and the $H^1$-BMO duality, Probability theory and harmonic analysis, Dekker, New York, 1986, pp. 1–19.
  • J. B. Garnett, Bounded analytic functions, rev. 1st edition, Springer, New York, 2007.
  • M. Junge, C. Le Merdy and Q. Xu, $H^{\infty}$-functional calculus and square functions on non-commutative $L^p$-spaces, Astérisque 305 (2006).
  • P. Koosis, Introduction to $H_p$ spaces, Cambridge Univ. Press, Cambridge, 1980.
  • T. Mei, Operator valued Hardy spaces, Mem. Amer. Math. Soc. 881 (2007) 1–64.
  • F. Nazarov, G. Pisier, S. Treil and A. Volberg, Sharp estimates in vector Carleson imbedding theorem and for vector paraproducts, J. Reine Angew. Math. 542 (2002), 147–171.
  • G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667–698.
  • G. Pisier and Q. Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517.
  • S. Pott and M. Smith, Vector paraproducts and Hankel operators of Schatten class via $p$-John–Nirenberg theorem, J. Funct. Anal. 217 (2004), 38–78.
  • E. Ricard, Décompositions de $H^1$ multiplicateurs de Schur et espaces d'opérateur, Thése de Doctorat de l'Université Paris VI, 2001.
  • E. M. Stein, Harmonic analysis, Princeton Univ. Press, New Jersey, 1993.
  • M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York, 1979.
  • Q. Xu, Recent development on non-commutative martingale inequalities, Proceedings of international conference on function spaces and its applications, Research Information Ltd, Buckinghamshire, UK, 2004, pp. 283–313.