Illinois Journal of Mathematics

Dense subsets of Banach $\ast$-algebras

Bertram Yood

Full-text: Open access

Abstract

Some subsets of a Banach ${}^{\ast}$-algebra $A$ are shown to be dense. In the special case of the algebra of $L(H)$ of all bounded linear operators on a Hilbert space $H$, the set of all $T$ in $L(H)$ for which $T^{n}$ is quasi-normal for no positive integers $n$ is dense in $L(H)$.

Article information

Source
Illinois J. Math., Volume 43, Issue 2 (1999), 403-409.

Dates
First available in Project Euclid: 19 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1255985222

Digital Object Identifier
doi:10.1215/ijm/1255985222

Mathematical Reviews number (MathSciNet)
MR1703195

Zentralblatt MATH identifier
0940.46032

Subjects
Primary: 46K05: General theory of topological algebras with involution

Citation

Yood, Bertram. Dense subsets of Banach $\ast$-algebras. Illinois J. Math. 43 (1999), no. 2, 403--409. doi:10.1215/ijm/1255985222. https://projecteuclid.org/euclid.ijm/1255985222


Export citation