Illinois Journal of Mathematics

Reiter's condition $P_{2}$ and the Plancherel measure for hypergroups

Frank Filbir and Rupert Lasser

Full-text: Open access

Abstract

In this paper we study the Reiter $P_{2}$ condition for commutative hypergroups and give necessary and sufficient conditions for $x \in \mathrm{supp}\, \pi$, where $\pi$ is the Plancherel measure. Finally we apply general results to characterize $\mathrm{supp} \, \pi$ in the case of polynomial hypergroups.

Article information

Source
Illinois J. Math., Volume 44, Issue 1 (2000), 20-32.

Dates
First available in Project Euclid: 19 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1255984951

Digital Object Identifier
doi:10.1215/ijm/1255984951

Mathematical Reviews number (MathSciNet)
MR1731379

Zentralblatt MATH identifier
0949.43005

Subjects
Primary: 43A62: Hypergroups
Secondary: 42C05: Orthogonal functions and polynomials, general theory [See also 33C45, 33C50, 33D45] 43A07: Means on groups, semigroups, etc.; amenable groups

Citation

Filbir, Frank; Lasser, Rupert. Reiter's condition $P_{2}$ and the Plancherel measure for hypergroups. Illinois J. Math. 44 (2000), no. 1, 20--32. doi:10.1215/ijm/1255984951. https://projecteuclid.org/euclid.ijm/1255984951


Export citation