Illinois Journal of Mathematics
- Illinois J. Math.
- Volume 52, Number 2 (2008), 653-666.
On some weighted norm inequalities for Littlewood–Paley operators
Abstract
It is shown that the $L^p_w,1<p<\infty$, operator norms of Littlewood--Paley operators are bounded by a multiple of $\|w\|_{A_p}^{\gamma_p}$, where $\gamma_p=\max\{1,p/2\}\frac {1}{p-1}$. This improves previously known bounds for all $p>2$. As a corollary, a new estimate in terms of $\|w\|_{A_p}$ is obtained for the class of Calderón-Zygmund singular integrals commuting with dilations.
Article information
Source
Illinois J. Math., Volume 52, Number 2 (2008), 653-666.
Dates
First available in Project Euclid: 23 July 2009
Permanent link to this document
https://projecteuclid.org/euclid.ijm/1248355356
Digital Object Identifier
doi:10.1215/ijm/1248355356
Mathematical Reviews number (MathSciNet)
MR2524658
Zentralblatt MATH identifier
1177.42016
Subjects
Primary: 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B25: Maximal functions, Littlewood-Paley theory
Citation
Lerner, Andrei K. On some weighted norm inequalities for Littlewood–Paley operators. Illinois J. Math. 52 (2008), no. 2, 653--666. doi:10.1215/ijm/1248355356. https://projecteuclid.org/euclid.ijm/1248355356