Illinois Journal of Mathematics

Thick subcategories and virtually Gorenstein algebras

Apostolos Beligiannis and Henning Krause

Full-text: Open access

Abstract

An Artin algebra is by definition virtually Gorenstein if the class of modules which are right orthogonal (with respect to $\operatorname {Ext}^*(-,-)$) to all Gorenstein projective modules coincides with the class of modules which are left orthogonal to all Gorenstein injective modules. We provide a new characterization in terms of finitely generated modules. In addition, an example of an algebra is presented which is not virtually Gorenstein.

Article information

Source
Illinois J. Math., Volume 52, Number 2 (2008), 551-562.

Dates
First available in Project Euclid: 23 July 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1248355349

Digital Object Identifier
doi:10.1215/ijm/1248355349

Mathematical Reviews number (MathSciNet)
MR2524651

Zentralblatt MATH identifier
1200.16022

Subjects
Primary: 16G50: Cohen-Macaulay modules
Secondary: 18E30: Derived categories, triangulated categories 16E65: Homological conditions on rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)

Citation

Beligiannis, Apostolos; Krause, Henning. Thick subcategories and virtually Gorenstein algebras. Illinois J. Math. 52 (2008), no. 2, 551--562. doi:10.1215/ijm/1248355349. https://projecteuclid.org/euclid.ijm/1248355349


Export citation

References

  • M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Secrétariat mathématique, Paris, 1967, Séminaire d'Algèbre Commutative dirigé par Pierre Samuel, 1966/67, Texte rédigé, d'après des exposés de Maurice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles.
  • M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. \bf86 (1991), 111–152.
  • P. Balmer and M. Schlichting, Idempotent completion of triangulated categories, J. Algebra \bf236 (2001), 819–834.
  • A. Beligiannis, Cohen–Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra \bf288 (2005), 137–211.
  • A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Preprint, 2002, 200 pp.
  • E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. \bf220 (1995), 611–633.
  • P. Jørgensen, Spectra of modules, J. Algebra 244 (2001), 744–784.
  • H. Krause, The stable derived category of a Noetherian scheme, Compos. Math. \bf141 (2005), 1128–1162.
  • H. Krause and Ø. Solberg, Applications of cotorsion pairs, J. Lond. Math. Soc. \bf68 (2003), 631–650.
  • J. Trlifaj, Infinite dimensional tilting modules and cotorsion pairs, Handbook of tilting theory, London Math. Soc. Lecture Note Series, vol. 332, 2007, Cambridge University Press, pp. 279–321.
  • J. L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque \bf239 (1996).
  • Y. Yoshino, Modules of G-dimension zero over local rings with the cube of maximal ideal being zero, Commutative algebra, singularities and computer algebra (Sinaia, 2002), NATO Sci. Ser. II Math. Phys. Chem, vol. 115, 2003, pp. 255–273.