Illinois Journal of Mathematics

The total absolute curvature of open curves in $E^{3}$

Kazuyuki Enomoto, Jin-ichi Itoh, and Robert Sinclair

Full-text: Open access

Abstract

The total absolute curvature of open curves in $E^3$ is discussed. We study the curves which attain the infimum of the total absolute curvature in the set of curves with fixed endpoints, end-directions, and length. We show that if the total absolute curvature of a sequence of curves in this set tends to the infimum, the limit curve must lie in a plane. Moreover, it is shown that the limit curve is either a subarc of a closed plane convex curve or a piecewise linear curve with at most three edges. The uniqueness of the curves minimizing the total absolute curvature is also discussed. This extends the results in [Yokohama Math. J. 48 (2000), 83–96], which deals with a similar problem for curves in $E^2$.

Article information

Source
Illinois J. Math., Volume 52, Number 1 (2008), 47-76.

Dates
First available in Project Euclid: 15 May 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1242414121

Digital Object Identifier
doi:10.1215/ijm/1242414121

Mathematical Reviews number (MathSciNet)
MR2507234

Zentralblatt MATH identifier
1202.53003

Subjects
Primary: 53A04: Curves in Euclidean space

Citation

Enomoto, Kazuyuki; Itoh, Jin-ichi; Sinclair, Robert. The total absolute curvature of open curves in $E^{3}$. Illinois J. Math. 52 (2008), no. 1, 47--76. doi:10.1215/ijm/1242414121. https://projecteuclid.org/euclid.ijm/1242414121


Export citation

References

  • P. A. Alexander, Y. He, Y. Chen, J. Orban and P. N. Bryan, {The design and characterization of two proteins with 88 Proc. Natl. Acad. Sci. USA 104 (2007), 11963–11968.
  • R. L. Bishop, Circular billiard tables, conjugate loci, and a cardioid, Regul. Chaotic Dyn. 8 (2003), 83–95.
  • A. A. Canutescu and R. L. Dunbrack, Jr., Cyclic coordinate descent: A robotics algorithm for protein loop closure, Protein Sci. 12 (2003), 963–972.
  • A. Carbone and M. Gromov, Mathematical slices of molecular biology, Gaz. Math. 88, suppl. (2001), 1–80.
  • G. S. Chirikjian and J. W. Burdick, Kinematically optimal hyper-redundant manipulator configurations, IEEE Trans. Robot. Autom. 11 (1995), 794–806.
  • V. Daggett and A. Fersht, The present view of the mechanism of protein folding, Nat. Rev. Mol. Cell Biol. 4 (2003), 497–502.
  • C. M. Dobson, Protein folding and misfolding, Nature 426 (2003), 884–890.
  • K. Enomoto, The total absolute curvature of open plane curves of fixed length, Yokohama Math. J. 48 (2000), 83–96.
  • K. Enomoto and J. Itoh, The total absolute curvature of nonclosed curves in $S^2$, Results Math. 45 (2004), 21–34.
  • K. Enomoto and J. Itoh, The total absolute curvature of nonclosed curves in $S^2$ (II), Results Math. 45 (2004), 230–240.
  • W. Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929), 238–252.
  • J. Itoh and R. Sinclair, Thaw: A tool for approximating cut loci on a triangulation of a surface, Experiment. Math. 13 (2004), 309–325.
  • J. Itoh and K. Kiyohara, The cut loci and conjugate loci on ellipsoids, Manuscripta Math. 114 (2004), 247–264.
  • W. Jin, O. Kambara, H. Sasakawa, A. Tamura and S. Takada, De novo design of foldable proteins with smooth folding tunnel: Automated negative design and experimental verification, Structure 11 (2003), 581–590.
  • B. Kuhlman, G. Dantas, G. C. Ireton, G. Vanini, B. L. Stoddard and D. Baker, Design of a novel globular protein fold with atomic-level accuracy, Science 302 (2003), 1364–1368.
  • J. Milnor, On the total curvature of knots, Ann. Math. 52 (1953), 248–257.
  • J. Milnor, On total curvatures of closed space curves, Math. Scand. 1 (1953), 289–296.
  • S. B. Prusiner, Shattuck lecture–-neurodegenerative diseases and prions, N. Engl. J. Med. 344 (2001), 1516–1526.
  • J. W. H. Schymkowitz, F. Rousseau and L. Serrano, Surfing on protein folding energy landscapes, Proc. Natl. Acad. Sci. USA 99 (2002), 15846–15848.
  • R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and Toponogov's comparison theorem, Tohoku Math. J. 59 (2007), 379–399.
  • E. L. Starostin, On the writhing number of a non-closed curve, Physical and numerical models in knot theory including applications to the life sciences (J. A. Calvo et al., eds.), Series on Knots and Everything, vol. 36, World Scientific Publishing, Singapore, 2005, pp. 525–546, Chapter 26.
  • C. Truesdell, The influence of elasticity on analysis; the classical heritage, Bull. Amer. Math. Soc. 9 (1983), 293–310.
  • P. G. Wolynes, Energy landscapes and solved protein-folding problems, Philos. Trans. R. Soc. Lond. Ser. A 363 (2005), 453–467.
  • J. M. Zimmerman and L. J. Maher III, Solution measurement of DNA curvature in papillomavirus E2 binding sites, Nucl. Acids Res. 31 (2003), 5134–5139.