## International Journal of Differential Equations

- Int. J. Differ. Equ.
- Volume 2011 (2011), Article ID 548982, 9 pages.

### Generalized Differential Transform Method to Space-Time Fractional Telegraph Equation

Mridula Garg, Pratibha Manohar, and Shyam L. Kalla

**Full-text: Open access**

#### Abstract

We use generalized differential transform method (GDTM) to derive the solution of space-time fractional telegraph equation in closed form. The space and time fractional derivatives are considered in Caputo sense and the solution is obtained in terms of Mittag-Leffler functions.

#### Article information

**Source**

Int. J. Differ. Equ., Volume 2011 (2011), Article ID 548982, 9 pages.

**Dates**

Received: 28 May 2011

Revised: 20 July 2011

Accepted: 23 July 2011

First available in Project Euclid: 25 January 2017

**Permanent link to this document**

https://projecteuclid.org/euclid.ijde/1485313240

**Digital Object Identifier**

doi:10.1155/2011/548982

**Mathematical Reviews number (MathSciNet)**

MR2843508

**Zentralblatt MATH identifier**

1234.35299

#### Citation

Garg, Mridula; Manohar, Pratibha; Kalla, Shyam L. Generalized Differential Transform Method to Space-Time Fractional Telegraph Equation. Int. J. Differ. Equ. 2011 (2011), Article ID 548982, 9 pages. doi:10.1155/2011/548982. https://projecteuclid.org/euclid.ijde/1485313240

#### References

- R. Hilfer,
*Applications of Fractional Calculus in Physics*, World Scientific, Singapore, 2000.Zentralblatt MATH: 0998.26002 - A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,
*Theory and Applications of Fractional Differential Equations*, vol. 204, Elsevier, Amsterdam, The Netherlands, 2006.Zentralblatt MATH: 1092.45003 - K. S. Miller and B. Ross,
*An Introduction to the Fractional Calculus and Fractional Differential Equations*, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993.Zentralblatt MATH: 0789.26002 - I. Podlubny,
*Fractional Differential Equations*, vol. 198 of*Mathematics in Science and Engineering*, Academic Press, San Diego, Calif, USA, 1999. - S. Momani, “Analytic and approximate solutions of the space- and time-fractional telegraph equations,”
*Applied Mathematics and Computation*, vol. 170, no. 2, pp. 1126–1134, 2005. - S. S. Ray and R. K. Bera, “Solution of an extraordinary differential equation by Adomian decomposition method,”
*Journal of Applied Mathematics*, no. 4, pp. 331–338, 2004.Mathematical Reviews (MathSciNet): MR2100259

Zentralblatt MATH: 1080.65069

Digital Object Identifier: doi:10.1155/S1110757X04311010 - S. S. Ray and R. K. Bera, “An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method,”
*Applied Mathematics and Computation*, vol. 167, no. 1, pp. 561–571, 2005.Mathematical Reviews (MathSciNet): MR2170934

Digital Object Identifier: doi:10.1016/j.amc.2004.07.020 - Q. Wang, “Homotopy perturbation method for fractional KdV-Burgers equation,”
*Chaos, Solitons and Fractals*, vol. 35, no. 5, pp. 843–850, 2008. - Ahmet Y\ild\ir\im, “He's homotopy perturbation method for solving the space- and time-fractional telegraph equations,”
*International Journal of Computer Mathematics*, vol. 87, no. 13, pp. 2998–3006, 2010.Mathematical Reviews (MathSciNet): MR2754242

Zentralblatt MATH: 1206.65239

Digital Object Identifier: doi:10.1080/00207160902874653 - H. Jafari, C. Chun, S. Seifi, and M. Saeidy, “Analytical solution for nonlinear gas dynamic equation by homotopy analysis method,”
*Applications and Applied Mathematics*, vol. 4, no. 1, pp. 149–154, 2009. - J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,”
*Computer Methods in Applied Mechanics and Engineering*, vol. 167, no. 1-2, pp. 57–68, 1998. - A. Sevimlican, “An approximation to solution of space and time fractional telegraph equations by He's variational iteration method,”
*Mathematical Problems in Engineering*, vol. 2010, Article ID 290631, 10 pages, 2010. - M. Garg and P. Manohar, “Numerical solution of fractional diffusion-wave equation with two space variables by matrix method,”
*Fractional Calculus & Applied Analysis*, vol. 13, no. 2, pp. 191–207, 2010. - S. Momani, Z. Odibat, and V. S. Erturk, “Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation,”
*Physics Letters. A*, vol. 370, no. 5-6, pp. 379–387, 2007. - Z. Odibat and S. Momani, “A generalized differential transform method for linear partial differential equations of fractional order,”
*Applied Mathematics Letters*, vol. 21, no. 2, pp. 194–199, 2008. - Z. Odibat, S. Momani, and V. S. Erturk, “Generalized differential transform method: application to differential equations of fractional order,”
*Applied Mathematics and Computation*, vol. 197, no. 2, pp. 467–477, 2008. - J. K. Zhou,
*Differential Transformation and Its Applications for Electrical Circuits*, Huazhong University Press, Wuhan, China, 1986. - J. Biazar and M. Eslami, “Differential transform method for systems of Volterra integral equations of the first kind,”
*Nonlinear Science Letters A*, vol. 1, pp. 173–181, 2010. - A. El-Said, M. El-Wakil, M. Essam Abulwafa, and A. Mohammed, “Extended weierstrass transformation method for nonlinear evolution equations,”
*Nonlinear Science Letters A*, vol. 1, 2010. - Y. Keskin and G. Oturanc, “The reduced differential transform method: a new approach to fractional partial differential equations,”
*Nonlinear Science Letters A*, vol. 1, pp. 207–217, 2010. - L. Debnath,
*Nonlinear Partial Differential Equations for Scientists and Engineers*, Birkhäauser, Boston, Mass, USA, 1997.Zentralblatt MATH: 1069.35001 - A. C. Metaxas and R. J. Meredith,
*Industrial Microwave Heating*, Peter Peregrinus, London, UK, 1993. - E. C. Eckstein, J. A. Goldstein, and M. Leggas, “The mathematics of suspensions: Kac walks and asymptotic analyticity,” in
*Proceedings of the 4th Mississippi State Conference on Difference Equations and Computational Simulations*, vol. 3, pp. 39–50. - J. Biazar, H. Ebrahimi, and Z. Ayati, “An approximation to the solution of telegraph equation by variational iteration method,”
*Numerical Methods for Partial Differential Equations*, vol. 25, no. 4, pp. 797–801, 2009.Mathematical Reviews (MathSciNet): MR2526981

Zentralblatt MATH: 1169.65335

Digital Object Identifier: doi:10.1002/num.20373 - Radu C. Cascaval, E. C. Eckstein, L. Frota, and J. A. Goldstein, “Fractional telegraph equations,”
*Journal of Mathematical Analysis and Applications*, vol. 276, no. 1, pp. 145–159, 2002.Mathematical Reviews (MathSciNet): MR1944342

Zentralblatt MATH: 1038.35142

Digital Object Identifier: doi:10.1016/S0022-247X(02)00394-3 - D. Kaya, “A new approach to the telegraph equation: an application of the decomposition method,”
*Bulletin of the Institute of Mathematics. Academia Sinica*, vol. 28, no. 1, pp. 51–57, 2000. - Z. Odibat and S. Momani, “A generalized differential transform method for linear partial differential equations of fractional order,”
*Applied Mathematics Letters*, vol. 21, no. 2, pp. 194–199, 2008.Mathematical Reviews (MathSciNet): MR2426978

Zentralblatt MATH: 1132.35302

Digital Object Identifier: doi:10.1016/j.aml.2007.02.022 - E. Orsingher and X. Zhao, “The space-fractional telegraph equation and the related fractional telegraph process,”
*Chinese Annals of Mathematics. Series B*, vol. 24, no. 1, pp. 45–56, 2003.Mathematical Reviews (MathSciNet): MR1966596

Zentralblatt MATH: 1033.60077

Digital Object Identifier: doi:10.1142/S0252959903000050 - E. Orsingher and L. Beghin, “Time-fractional telegraph equations and telegraph processes with Brownian time,”
*Probability Theory and Related Fields*, vol. 128, no. 1, pp. 141–160, 2004.Mathematical Reviews (MathSciNet): MR2027298

Zentralblatt MATH: 1049.60062

Digital Object Identifier: doi:10.1007/s00440-003-0309-8 - M. Caputo,
*Elasticita e Dissipazione*, Zanichelli, Bologna, Italy, 1969. - G. M. Mittag-Leffler, “Sur la nouvelle fonction ${E}_{\alpha }(x)$,”
*Comptes rendus de l' Académie des Sciences Paris*, no. 137, pp. 554–558, 1903. - A. Wiman, “Über den fundamentalsatz in der teorie der funktionen ${E}_{\alpha }(x)$,”
*Acta Mathematica*, vol. 29, no. 1, pp. 191–201, 1905. - M. Garg and A. Sharma, “Solution of space-time fractional telegraph equation by Adomian decomposition method,”
*Journal of Inequalities and Special Functions*, vol. 2, no. 1, pp. 1–7, 2011.

### More like this

- A New Technique of Laplace Variational Iteration Method for Solving Space-Time Fractional Telegraph Equations

Alawad, Fatima A., Yousif, Eltayeb A., and Arbab, Arbab I., International Journal of Differential Equations, 2013 - Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative

Aguilar, José Francisco Gómez and Hernández, Margarita Miranda, Abstract and Applied Analysis, 2014 - A Generalized q-Mittag-Leffler Function by q-Captuo Fractional Linear Equations

Abdeljawad, Thabet, Benli, Betül, and Baleanu, Dumitru, Abstract and Applied Analysis, 2012

- A New Technique of Laplace Variational Iteration Method for Solving Space-Time Fractional Telegraph Equations

Alawad, Fatima A., Yousif, Eltayeb A., and Arbab, Arbab I., International Journal of Differential Equations, 2013 - Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative

Aguilar, José Francisco Gómez and Hernández, Margarita Miranda, Abstract and Applied Analysis, 2014 - A Generalized q-Mittag-Leffler Function by q-Captuo Fractional Linear Equations

Abdeljawad, Thabet, Benli, Betül, and Baleanu, Dumitru, Abstract and Applied Analysis, 2012 - On a Fractional Master Equation

Thomas, Anitha, International Journal of Differential Equations, 2011 - New Method for Solving Linear Fractional Differential Equations

Rida, S. Z. and Arafa, A. A. M., International Journal of Differential Equations, 2011 - Numerical Solutions for the Time and Space Fractional Nonlinear Partial Differential Equations

Gepreel, Khaled A., Nofal, Taher A., and Alotaibi, Fawziah M., Journal of Applied Mathematics, 2013 - Algorithms for nonlinear fractional partial differential
equations: A selection of numerical methods

Momani, Shaher, Odibat, Zaid, and Hashim, Ishak, Topological Methods in Nonlinear Analysis, 2008 - Poisson-Type Processes Governed by Fractional and Higher-Order Recursive Differential Equations

Beghin, Luisa and Orsingher, Enzo, Electronic Journal of Probability, 2010 - A Generalized Henry-Type Integral Inequality and Application to Dependence on Orders and Known Functions for a Fractional Differential Equation

Zhou, Jun, Journal of Applied Mathematics, 2014 - Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform

Singh, Jagdev, Kumar, Devendra, and Kılıçman, A., Abstract and Applied Analysis, 2012