Open Access
2011 Nonlinear Vibrations of Multiwalled Carbon Nanotubes under Various Boundary Conditions
Hossein Aminikhah, Milad Hemmatnezhad
Int. J. Differ. Equ. 2011: 1-17 (2011). DOI: 10.1155/2011/343576

Abstract

The present work deals with applying the homotopy perturbation method to the problem of the nonlinear oscillations of multiwalled carbon nanotubes embedded in an elastic medium under various boundary conditions. A multiple-beam model is utilized in which the governing equations of each layer are coupled with those of its adjacent ones via the van der Waals interlayer forces. The amplitude-frequency curves for large-amplitude vibrations of single-walled, double-walled, and triple-walled carbon nanotubes are obtained. The influences of some commonly used boundary conditions, changes in material constant of the surrounding elastic medium, and variations of the nanotubes geometrical parameters on the vibration characteristics of multiwalled carbon nanotubes are discussed. The comparison of the generated results with those from the open literature illustrates that the solutions obtained are of very high accuracy and clarifies the capability and the simplicity of the present method. It is worthwhile to say that the results generated are new and can be served as a benchmark for future works.

Citation

Download Citation

Hossein Aminikhah. Milad Hemmatnezhad. "Nonlinear Vibrations of Multiwalled Carbon Nanotubes under Various Boundary Conditions." Int. J. Differ. Equ. 2011 1 - 17, 2011. https://doi.org/10.1155/2011/343576

Information

Received: 7 May 2011; Accepted: 20 June 2011; Published: 2011
First available in Project Euclid: 25 January 2017

zbMATH: 1235.82108
MathSciNet: MR2843504
Digital Object Identifier: 10.1155/2011/343576

Rights: Copyright © 2011 Hindawi

Vol.2011 • 2011
Back to Top