Innovations in Incidence Geometry

On the intersection of Hermitian surfaces

Nicola Durante and Gary Ebert

Full-text: Open access


Giuzzi (2006) and Donati and Duranti (2008) determined the structure of the intersection of two Hermitian surfaces of PG ( 3 , q 2 ) under the hypotheses that in the pencil they generate there is at least one degenerate surface. Aguglia, Cossidente and Ebert (2005) and Donati and Duranti (2008) showed that under suitable hypotheses the intersection of two Hermitian surfaces generating a non-degenerate pencil is a pseudo-regulus. Here we completely determine all possible intersection configurations for two Hermitian surfaces of PG ( 3 , q 2 ) generating a non-degenerate pencil.

Article information

Innov. Incidence Geom., Volume 6-7, Number 1 (2007), 153-167.

Received: 7 November 2007
Accepted: 15 February 2008
First available in Project Euclid: 28 February 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05B25: Finite geometries [See also 51D20, 51Exx] 51E20: Combinatorial structures in finite projective spaces [See also 05Bxx]

Hermitian curve Hermitian surface


Durante, Nicola; Ebert, Gary. On the intersection of Hermitian surfaces. Innov. Incidence Geom. 6-7 (2007), no. 1, 153--167. doi:10.2140/iig.2008.6.153.

Export citation


  • A. Aguglia, A. Cossidente and G. L. Ebert, On pairs of permutable Hermitian surfaces, Discrete Math. 301 (2005), 28–33.
  • G. Donati and N. Durante, A subset of the Hermitian surface, Innov. Incidence Geom. 3 (2006), 13–23.
  • ––––, On the intersection of Hermitian curves and Hermitian surfaces, Discrete Math. 308 (2008), no. 22, 5196–5203.
  • G. L. Ebert and J. W. P. Hirschfeld, Complete systems of lines on a Hermitian surface over a finite field, Des. Codes Cryptogr. 9 (1999), 253–268.
  • J. W. Freeman, Reguli and pseudo-reguli in ${\rm PG}(3,\,s\sp{2})$, Geom. Dedicata 9 (1980), 267–280.
  • L. Giuzzi, On the intersection of Hermitian surfaces, J. Geom. 85 (2006), 49–60.
  • J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Clarendon Press, Oxford, 1991.
  • B. C. Kestenband, Unital intersections in finite projective planes, Geom. Dedicata 11 (1981), 107–117.
  • ––––, Degenerate unital intersections in finite projective planes, Geom. Dedicata 13 (1982), 101–106.
  • B. Segre, Lectures on Modern Geometry, Cremonese, Roma, 1961.
  • D. E. Taylor, The Geometry of the Classical Groups, Haldermann Verlag Berlin, Berlin, 1992.
  • O. Veblen, A system of axioms for geometry, Trans. Amer. Math. Soc. 5 (1904), no. 3 343–384. \end thebibliography