Innovations in Incidence Geometry

A course on Moufang sets

Tom De Medts and Yoav Segev

Full-text: Open access

Abstract

A Moufang set is essentially a doubly transitive permutation group such that the point stabilizer contains a normal subgroup which is regular on the remaining points. These regular normal subgroups are called the root groups and they are assumed to be conjugate and to generate the whole group.

Moufang sets play an significant role in the theory of buildings, they provide a tool to study linear algebraic groups of relative rank one, and they have (surprising) connections with other algebraic structures.

In these course notes we try to present the current approach to Moufang sets. We include examples, connections with related areas of mathematics and some proofs where we think it is instructive and within the scope of these notes.

Article information

Source
Innov. Incidence Geom., Volume 9, Number 1 (2009), 79-122.

Dates
Received: 25 June 2007
Accepted: 7 November 2007
First available in Project Euclid: 28 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.iig/1551323126

Digital Object Identifier
doi:10.2140/iig.2009.9.79

Mathematical Reviews number (MathSciNet)
MR2658895

Zentralblatt MATH identifier
1233.20028

Subjects
Primary: 17C30: Associated groups, automorphisms 20B22: Multiply transitive infinite groups 20E42: Groups with a $BN$-pair; buildings [See also 51E24] 20G15: Linear algebraic groups over arbitrary fields 51E24: Buildings and the geometry of diagrams

Keywords
Moufang sets BN-pairs rank one groups algebraic groups Jordan algebras

Citation

De Medts, Tom; Segev, Yoav. A course on Moufang sets. Innov. Incidence Geom. 9 (2009), no. 1, 79--122. doi:10.2140/iig.2009.9.79. https://projecteuclid.org/euclid.iig/1551323126


Export citation

References

  • A. Borovik and A. Nesin, Groups of finite Morley rank, Oxford university press, London, 1994.
  • R. H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc. 2 (1951), 878–890.
  • T. De Medts and Y. Segev, Identities in Moufang sets, Trans. Amer. Math. Soc. 360 (2008), 5831–5852.
  • ––––, Finite special Moufang sets of even characteristic, Commun. Contemp. Math. 10 (2008), no. 3, 449–454.
  • T. De Medts, Y. Segev and K. Tent, Special Moufang sets, their root groups, and their $\mu$-maps, Proc. London Math. Soc. 96 (2008), no. 3, 767–791.
  • T. De Medts and R. M. Weiss, Moufang sets and Jordan division algebras, Math. Ann. 335 (2006), no. 2, 415–433.
  • ––––, The norm of a Ree group, Nagoya Math. J., to appear.
  • C. Hering, W. M. Kantor and G. M. Seitz, Finite groups with a split BN-pair of rank $1$, I, J. Algebra 20 (1972), 435–475.
  • E. Kleinfeld, Alternative division rings of characteristic $2$, Proc. Natl. Acad. Sci. USA 37 (1951), 818–820.
  • K. McCrimmon, A general theory of Jordan rings, Proc. Natl. Acad. Sci. USA 56 (1966), 1072–1079.
  • ––––, A taste of Jordan algebras, Springer-Verlag, Berlin, Heidelberg, New York, 2004.
  • K. McCrimmon and E. Zel'manov, The structure of strongly prime quadratic Jordan algebras, Adv. Math. 69 (1988), no. 2, 133–222.
  • B. Mühlherr, Some contributions to the theory of buildings based on the gate property, Ph.D. thesis, Tübingen, 1994.
  • B. Mühlherr and H. Van Maldeghem, Moufang sets from groups of mixed type, J. Algebra 300 (2006), no. 2, 820–833.
  • T. Peterfalvi, Sur les BN-paires scindées de rang $1$, de degré impair, Comm. Algebra 18 (1990), no. 7, 2281–2292.
  • ––––, Le théoréme de Bender-Suzuki II, in Révision dans les groupes finis. Groupes du type de Lie de rang $1$, Astérisque 143 (1986), 235–295.
  • Y. Segev, Finite special Moufang sets of odd characteristic, Commun. Contemp. Math. 10 (2008), no. 3, 455–475.
  • ––––, Proper Moufang sets with abelian root groups are special, J. Amer. Math. Soc. 22 (2009), 889–908.
  • Y. Segev and R. M. Weiss, On the action of the Hua subgroups in special Moufang sets, Math. Proc. Cambridge Philos. Soc. 144 (2008), 77–84.
  • E. Shult, On a class of doubly transitive groups, Illinois J. Math. 16 (1972), 434–445.
  • T. A. Springer and F. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monogr. Math., Springer-Verlag, Berlin, 2000. viii+208 pp.
  • M. Suzuki, On a class of doubly transitive groups II, Ann. of Math. (2) 79 (1964), 514–589.
  • F. Timmesfeld, Abstract root subgroups and simple groups of Lie-type, Birkhäuser-Verlag, Monogr. Math., vol. 95, Basel, Berlin, Boston, 2001.
  • J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math., vol. 386, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
  • ––––, Twin buildings and groups of Kac-Moody type, in Groups, combinatorics & geometry (Durham, 1990), 249–286, London Math. Soc. Lecture Note Ser. 165, Cambridge University Press, Cambridge, 1992.
  • J. Tits and R. Weiss, Moufang Polygons, Springer Monogr. Math., Springer-Verlag, Berlin, Heidelberg, New York, 2002.