Hokkaido Mathematical Journal

Atomic decompositions of weighted Hardy-Morrey spaces

Kwok-Pun HO

Full-text: Open access

Abstract

We obtain the Fefferman-Stein vector-valued maximal inequalities on Morrey spaces generated by weighted Lebesgue spaces. Using these inequalities, we introduce and define the weighted Hardy-Morrey spaces by using the Littlewood-Paley functions. We also establish the non-smooth atomic decompositions for the weighted Hardy-Morrey spaces and, as an application of the decompositions, we obtain the boundedness of a class of singular integral operators on the weighted Hardy-Morrey spaces.

Article information

Source
Hokkaido Math. J., Volume 42, Number 1 (2013), 131-157.

Dates
First available in Project Euclid: 4 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.hokmj/1362406643

Digital Object Identifier
doi:10.14492/hokmj/1362406643

Mathematical Reviews number (MathSciNet)
MR3076303

Zentralblatt MATH identifier
1269.42010

Subjects
Primary: 42B25: Maximal functions, Littlewood-Paley theory 42B30: $H^p$-spaces 42B35: Function spaces arising in harmonic analysis

Keywords
Vector-valued maximal inequalities Morrey-Hardy spaces Atomic decompositions Singular integral operator

Citation

HO, Kwok-Pun. Atomic decompositions of weighted Hardy-Morrey spaces. Hokkaido Math. J. 42 (2013), no. 1, 131--157. doi:10.14492/hokmj/1362406643. https://projecteuclid.org/euclid.hokmj/1362406643


Export citation