Hokkaido Mathematical Journal

Purifiable Subgroups II

Takashi OKUYAMA

Full-text: Open access

Abstract

Let $G$ be an arbitrary group. A subgroup $A$ of $G$ is purifiable in $G$ if, among the pure subgroups of $G$ containing $A$, there exists a minimal one. We studied purifiable subgroups of abelian groups in [4]. In this note, we give simple proofs of [4,Theorem 4.6], [4,Theorem 4.7], and [4,Theorem 4.8].

Article information

Source
Hokkaido Math. J., Volume 34, Number 1 (2005), 237-245.

Dates
First available in Project Euclid: 29 September 2010

Permanent link to this document
https://projecteuclid.org/euclid.hokmj/1285766206

Digital Object Identifier
doi:10.14492/hokmj/1285766206

Mathematical Reviews number (MathSciNet)
MR2130780

Zentralblatt MATH identifier
1070.20063

Subjects
Primary: 20K21: Mixed groups
Secondary: 20K27: Subgroups

Keywords
almost-dense subgroup p-purifiable subgroup purifiable subgroup poverhang set torsion-complete

Citation

OKUYAMA, Takashi. Purifiable Subgroups II. Hokkaido Math. J. 34 (2005), no. 1, 237--245. doi:10.14492/hokmj/1285766206. https://projecteuclid.org/euclid.hokmj/1285766206


Export citation