Hokkaido Mathematical Journal

Involutions of the Mathieu group $M_{24}$

Maro KIMIZUKA and Ryuji SASAKI

Full-text: Open access

Abstract

We shall construct involutions, in the symmetric group $S_{24}$, which generate $M_{22}$, $M_{23}$ and $M_{24}$.

Article information

Source
Hokkaido Math. J., Volume 36, Number 2 (2007), 345-351.

Dates
First available in Project Euclid: 25 June 2010

Permanent link to this document
https://projecteuclid.org/euclid.hokmj/1277472807

Digital Object Identifier
doi:10.14492/hokmj/1277472807

Mathematical Reviews number (MathSciNet)
MR2347429

Zentralblatt MATH identifier
1139.20014

Subjects
Primary: 20D06: Simple groups: alternating groups and groups of Lie type [See also 20Gxx]
Secondary: 20B20: Multiply transitive finite groups 20D08: Simple groups: sporadic groups 90B05: Inventory, storage, reservoirs

Keywords
$M$-matrix Golay code Mathieu group

Citation

KIMIZUKA, Maro; SASAKI, Ryuji. Involutions of the Mathieu group $M_{24}$. Hokkaido Math. J. 36 (2007), no. 2, 345--351. doi:10.14492/hokmj/1277472807. https://projecteuclid.org/euclid.hokmj/1277472807


Export citation