Hokkaido Mathematical Journal

A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes

Dongyang SHI and Hongbo GUAN

Full-text: Open access

Abstract

A class of Crouzeix-Raviart type nonconforming finite element methods are proposed for the parabolic variational inequality problem with moving grid on anisotropic meshes. By using some novel approaches and techniques, the same optimal error estimates are obtained as the traditional ones. It is shown that the classical regularity condition or quasi-uniform assumption on meshes is not necessary for the finite element analysis.

Article information

Source
Hokkaido Math. J., Volume 36, Number 4 (2007), 687-709.

Dates
First available in Project Euclid: 3 May 2010

Permanent link to this document
https://projecteuclid.org/euclid.hokmj/1272848028

Digital Object Identifier
doi:10.14492/hokmj/1272848028

Mathematical Reviews number (MathSciNet)
MR2378286

Zentralblatt MATH identifier
1181.65100

Subjects
Primary: 65N15: Error bounds
Secondary: 65N30: Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods

Keywords
variational inequality parabolic anisotropic moving grid optimal error estimates

Citation

SHI, Dongyang; GUAN, Hongbo. A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes. Hokkaido Math. J. 36 (2007), no. 4, 687--709. doi:10.14492/hokmj/1272848028. https://projecteuclid.org/euclid.hokmj/1272848028


Export citation