Hiroshima Mathematical Journal

On universal hyperbolic orbifold structures in $S^{3}$ with the Borromean rings as singularity

Hugh M. Hilden, María Teresa Lozano, and José María Montesinos-Amilibia

Full-text: Open access

Abstract

An orientable $3$-orbifold is universal iff every closed, orientable $3$-manifold is the underlying space of an orbifold structure that is an orbifold-covering of it. The first known example of universal orbifold was $\textbf{B}_{4,4,4}=(S^{3}, B,4)$ where $B$ denotes the Borromean rings and all the isotropy groups are cyclic of order 4. The main result in this article is that the hyperbolic orbifold $\textbf{B}_{m,2p,2q}$ is universal for every $m\geq 3$, $p\geq 2$, $q\geq 2$.

Article information

Source
Hiroshima Math. J., Volume 40, Number 3 (2010), 357-370.

Dates
First available in Project Euclid: 8 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1291818850

Digital Object Identifier
doi:10.32917/hmj/1291818850

Mathematical Reviews number (MathSciNet)
MR2766667

Zentralblatt MATH identifier
1227.57006

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57M12: Special coverings, e.g. branched 57M50: Geometric structures on low-dimensional manifolds

Keywords
Orbifold Borromean rings universal orbifold

Citation

Hilden, Hugh M.; Lozano, María Teresa; Montesinos-Amilibia, José María. On universal hyperbolic orbifold structures in $S^{3}$ with the Borromean rings as singularity. Hiroshima Math. J. 40 (2010), no. 3, 357--370. doi:10.32917/hmj/1291818850. https://projecteuclid.org/euclid.hmj/1291818850


Export citation

References

  • G. Brumfiel, H.M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, E. Ramirez-Lozada, H. Short, D. Tejada, and M. Toro, Three manifolds as geometric branched covering of the three sphere. Bol. Soc. Mat. Mexicana (3), 14, 2008.
  • H. M. Hilden, M. T. Lozano, J. M. Montesinos, and W. C. Whitten, On universal groups and three-manifolds. Invent. Math., 87(3):441--456, 1987.
  • H.M. Hilden, M.T. Lozano, and J. M. Montesinos, The Whitehead link, the Borromean rings and the knot $9\sb46$ are universal. Collect. Math., 34(1):19--28, 1983.
  • H.M. Hilden, M.T. Lozano, and J. M. Montesinos-Amilibia, On the Borromean orbifolds: geometry and arithmetic In Topology'90(Columbus,OH, 1990), of Ohio State Univ. Math. Res. Inst. Publ.,pages 133--167. De Gruyter, Berlin,1992.
  • H.M. Hilden, M.T. Lozano, and J. M. Montesinos-Amilibia, Universal $2$-bridge knot and link orbifolds. J. Knot Theory Ramifications, 2(2):141--148, 1993.
  • H. M. Hilden, Every closed orientable $3$ -manifold is a $3$-fold branched covering space of $S\sp3$. Bull. Amer. Math. Soc., 80:1243--1244, 1974.
  • M. Kato, On uniformizations of orbifolds. In Homotopy theory and related topics (Kyoto, 1984), volume 9 of Adv. Stud. Pure Math., pages 149--172. North-Holland, Amsterdam, 1987.
  • J.M. Montesinos, Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo. Ph. D. Thesis, 1971.
  • J. M. Montesinos, A representation of closed orientable $3$-manifolds as $3$-fold branched coverings of $S\sp3$. Bull. Amer. Math. Soc., 80:845--846, 1974.