Hiroshima Mathematical Journal

Reduction of associate classes for block designs and related combinatorial arrangements

Sanpei Kageyama

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 3 (1974), 527-618.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206136840

Digital Object Identifier
doi:10.32917/hmj/1206136840

Mathematical Reviews number (MathSciNet)
MR0369094

Zentralblatt MATH identifier
0315.05008

Subjects
Primary: 05B05: Block designs [See also 51E05, 62K10]

Citation

Kageyama, Sanpei. Reduction of associate classes for block designs and related combinatorial arrangements. Hiroshima Math. J. 4 (1974), no. 3, 527--618. doi:10.32917/hmj/1206136840. https://projecteuclid.org/euclid.hmj/1206136840


Export citation

References

  • [1] Adhikary, B. (1966). Some types of w-associate PBIB association schemes. Calcutta Statist. Assoc. Bull. 15 47-74.
  • [2] Anderson, T. W. and Gupta, S. D. (1963). Some inequalities on characteristic roots of matrices. Biometrika 50 522-524.
  • [3] Atiqullah, M. (1961). On a property of balanced designs. Biometrika 48 215-218.
  • [4] Bhaskararao, M. (1966). A note on equireplicate balanced designs with b= v. Calcutta Statist. Assoc. Bull. 15 43-44.
  • [5] Bose, R. C. (1942) . A note on the resolvability of balanced incomplete block designs. Sankhya 105-110.
  • [6] Bose, R. C. (1950). Least Squares Aspects of Analysis of Variance. Institute of Statistics, University of North Carolina.
  • [7] Bose, R. C. and Clatworthy, W. H. (1955). Some classes of partially balanced designs. Ann. Math. Statist. 26 212-232.
  • [8] Bose, R. C. and Mesner, D. M. (1959). On linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30 21-38.
  • [9] Bose, R. C. and Nair, K. R. (1939). Partially balanced incomplete block designs. Sankhya 4 337-372.
  • [10] Bose, R. C. and Shimamoto, T. (1952). Classification and analysis of partially balanced incomplete block designs with two associate classes. J. Amer. Statist. Assoc. 47 151-184.
  • [11] Bose, R. C. and Shrikhande, S. S. (1960). On the construction of sets of pairwise orthogonal Latin squares and the falsity of a conjecture of Euler. Trans. Amer. Math. Soc. 95 191-209.
  • [12] Chakrabarti, M. C. (1962). Mathematics of Design and Analysis of Experiments. Asia Publishing House, Bombay.
  • [13] Clatworthy, W. H. and Lewyckyj, R. J. (1968). Comments on Takeuchi's table of difference sets generating balanced incomplete block designs. Rev. Inst. Internat. Statist. 36 12-18.
  • [14] Enomoto, H. (1974). Personal communication.
  • [15] Fisher, R. A. (1940). An examination of the different possible solutionsof a problem in incomplete blocks. Ann. Eugen. 10 52-75.
  • [16] Hinkelmann, K. (1964). Extended group divisible partially balanced incompleteblock designs. Ann. Math. Statist. 35 681-695.
  • [17] Hinkelmann, K. and Kempthorne, O. (1963). Two classes of group divisible partial diallel crosses. Biometrika 50 281-291.
  • [18] Ishii, G. (1963). On the analysis of PBBD and BBD (in Japanese). Seminar Reports of Osaka Statistical Association 7 221-232.
  • [19] Ishii, G. (1972). The Design of Experiments'. Theory of Allcations (in Japanese). Baihkan.
  • [20] Ishii, G. and Ogawa, J. (1965). On the analysis of balanced and partially balanced block designs. Osaka City Univ. Business Review 81 1-31.
  • [21] John, P. W. M. (1964). Balanced designs with unequal numbers of replicates. Ann. Math. Statist. 35 897-899.
  • [22] Kageyama, S. (1971). An improved inequality for balanced incomplete block designs. Ann. Math. Statist. 42 1448-1449.
  • [23] Kageyama, S. (1972). On the reduction of associate classes for certain PBIB designs. Ann. Math. Statist. 43 1528-1540.
  • [24] Kageyama, S. (1972). A survey of resolvable solutions of balanced incomplete block designs. Internat. Statist. Rev. 40 269-273.
  • [25] Kageyama, S. (1972). Note on Takeuchi's table of difference sets generating balanced incomplete block designs. Internat. Statist. Rev. 40 275-276.
  • [26] Kageyama, S. (1973). On /^-resolvable and affine //-resolvable balanced incomplete block designs. Ann. Statist. 1 195-203.
  • [27] Kageyama, S. (1973). On the inequality for BIBDs with special parameters. Ann. Statist. 1 204-207.
  • [28] Kageyama, S. (1974). Note on the reduction of associate classes for PBIB designs. Ann. Inst. Statist. Math. 26 163-170.
  • [29] Kageyama, S. (1974). On the incomplete block designs derivable from the association schemes. J. Combinatorial Theory (A) 17 269-272.
  • [30] Kageyama, S. (1974). On the reduction of associate classes for the PBIB design of a certain generalized type. Ann. Statist. 2, No. 6.
  • [31] Kempthorne, O. (1952). The Design and Analysis of Experiments. Wiley, New York.
  • [32] Kishen, K. (1940-1941). Symmetrical unequal block arrangements. Sankhya 5 329- 344.
  • [33] Kulshreshtha, A. C., Dey, A. and Saha, G. M. (1972). Balanced designs with unequal replications and unequal block sizes. Ann. Math. Statist. 43 1342-1345.
  • [34] Kusumoto, K. (1965). Hypercubic designs. Wakayama Medical Reports 9 123-132.
  • [35] Nair, C. R. (1964). The impossibility of certain PBIB designs. Calcutta Statist. Assoc. Bull. 13 87-88.
  • [36] Nair, K. R. (1950). Partially balanced incomplete block designs involving only two replication. Calcutta Statist. Assoc. Bull. 3 83-86.
  • [37] Nair, K. R. (1951). Rectangular lattices and partially balanced incomplete block designs. Biometrics 7 145-154.
  • [38] Nair, K. R. and Rao, C. R. (1942). A note on partially balanced incomplete block designs. Science and Culture 7 568-569.
  • [39] Nandi, H. K. and Adhikary, B. (1965). m-associate cyclical association schemes. Essays in Probability and Statistics, S. N. Roy memorial volume, Univ. of North Carolina.
  • [40] Ogawa, J. (1961). On a unified method of deriving necessary conditions for existence of symmetrical partially balanced incomplete block designs of certain types. Bull. Inst. Internat. Statist. 38 43-57.
  • [41] Okuno, C. and Okuno, T. (1961). On the construction of a class of partially balanced incomplete block designs by calculus of blocks. Rep. Stat. Appl. Res.,JUSE 8 113-139.
  • [42] Raghavarao, D. (1960). A generalization of group divisible designs. Ann. Math. Statist. 31 756-771.
  • [43] Raghavarao, D. (1962). On balanced unequal block designs. Biometrika 49 561- 562.
  • [44] Raghavarao, D. (1962). Symmetrical unequal block arrangements with two unequal block sizes. Ann. Math. Statist. 33 620-633.
  • [45] Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York.
  • [46] Raghavarao, D. and Chandrasekharao, K. (1964). Cubic designs. Ann. Math. Statist. 35 389-397.
  • [47] Rao, V. R. (1958). A note on balanced designs. Ann. Math. Statist. 29 290-294.
  • [48] Roy, P. M. (1962). On the properties and construction of HGD designs with /w-associate classes. Calcutta Statist. Assoc. Bull. 11 10-38.
  • [49] Shrikhande, S. S. (1959b). The uniqueness of the Lz association scheme. Ann. Math. Statist. 30 781-798.
  • [50] Shrikhande, S. S. (1962). On a two-parameter family of balanced incomplete block designs. Sankhya 24 33-40.
  • [51] Shrikhande, S. S. and Raghavarao, D. (1963). Affine -resolvable incomplete block designs. Contributions to Statistics. Presented to Prof. P. C. Mahalanobis on the occasion of his 70th birthday. Pergamon Press, pp. 471-480.
  • [52] Sillitto, G. P. (1957). An extension property of a class of balanced incomplete block designs. Biometrika 44 278-279.
  • [53] Sillitto, G. P. (1964). Note on Takeuchi's table of difference sets generating balanced incomplete block designs. Rev. Inst. Internat. Statist. 32 251.
  • [54] Surendran, P. U. (1968). Association matrices and the Kronecker product of designs. Ann. Math. Statist. 39 676-680.
  • [55] Takeuchi, K. (1962). A table of difference sets generating balanced incomplete block designs. Rev. Inst. Internat. Statist. 30 361-366.
  • [56] Tharthare, S. K. (1963). Right angular designs. Ann. Math. Statist. 34 1057-1067.
  • [57] Tharthare, S. K. (1965). Generalized right angular designs. Ann. Math. Statist. 36 1535-1553.
  • [58] Vartak, M. N. (1955). On an application of Kronecker product of matrices tostatistical designs. Ann. Math. Statist. 26 420-438.
  • [59] Yamamoto, S. and Fujii, Y. (1963). Analysis of partially balanced incomplete block designs. J. Sci. Hiroshima Univ. Ser. A-I 27 119-135.
  • [60] Yamamoto, S. and Fujikoshi, Y. (1968). Two-way classification designs with unequal cell frequencies. J. Sci. Hiroshima Univ. Ser. A-I 32 357-370
  • [61] Yamamoto, S., Fujii, Y. and Hamada, N. (1965). Composition of some series of association algebras. J. Sci. Hiroshima Univ. Ser. A-I 29 181-215.
  • [62] Yates, F. (1936). Incomplete randomized blocks. Ann. Eugen. 7 121-140.