Hiroshima Mathematical Journal

Locally coalescent classes of Lie algebras

Shigeaki Tôgô and Naoki Kawamoto

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 4, Number 3 (1974), 509-520.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206136838

Digital Object Identifier
doi:10.32917/hmj/1206136838

Mathematical Reviews number (MathSciNet)
MR0357530

Zentralblatt MATH identifier
0303.17003

Subjects
Primary: 17B65: Infinite-dimensional Lie (super)algebras [See also 22E65]

Citation

Tôgô, Shigeaki; Kawamoto, Naoki. Locally coalescent classes of Lie algebras. Hiroshima Math. J. 4 (1974), no. 3, 509--520. doi:10.32917/hmj/1206136838. https://projecteuclid.org/euclid.hmj/1206136838


Export citation

References

  • [1] R. K. Amayo, Soluble subideals of Lie algebras, Compositio Math., 25 (1972), 221-232.
  • [2] R. K. Amayo, Infinite-dimensional Lie algebras, Ph. D. thesis, University of Warwick, 1972.
  • [3] R. K. Amayo, Locally coalescent classes of Lie algebras, Compositio Math., 27 (1973), 107-117.
  • [4] R. K. Amayo, The derived join theorem and coalescence, Compositio Math., 27 (1973), 119-133.
  • [5] B. Hartley, Locally nilpotent ideals of a Lie algebra, Proc. Cambridge Philos.Soc., 63 (1967), 257-272.
  • [6] I. Stewart, Lie Algebras, Lecture Notes in Mathematics 127, Springer, Berlin-Heidelberg-New York,1970.
  • [7] I. Stewart, Structure theorems for a class of locally finite Lie algebras, Proc. London Math. Soc.(3),24 (1972), 79-100.
  • [8] S. Togo, Radicals of infinite dimensional Lie algebras, Hiroshima Math. J., 2 (1972), 179-203.
  • [9] S. Togo, Characterizations of radicals of infinite dimensional Lie algebras, Hiroshima Math. J., 3 (1973), 25-36.
  • [10] S. Togo and N. Kawamoto, Ascendantly coalescent classes and radicals of Lie algebras, Hiroshima Math. J., 2 (1972), 253-261.