Hiroshima Mathematical Journal

Symplectic Pontrjagin numbers and homotopy groups of $M{\rm Sp}(n)$

Mitsunori Imaoka

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 12, Number 1 (1982), 151-181.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206133881

Digital Object Identifier
doi:10.32917/hmj/1206133881

Mathematical Reviews number (MathSciNet)
MR647236

Zentralblatt MATH identifier
0487.57008

Subjects
Primary: 57R90: Other types of cobordism [See also 55N22]

Citation

Imaoka, Mitsunori. Symplectic Pontrjagin numbers and homotopy groups of $M{\rm Sp}(n)$. Hiroshima Math. J. 12 (1982), no. 1, 151--181. doi:10.32917/hmj/1206133881. https://projecteuclid.org/euclid.hmj/1206133881


Export citation

References

  • [1] J. F.Adams, Stable Homotopy and Generalised Homology, Chicago Lectures in Math., The University of Chicago Press,1974.
  • [2] S. Araki andH. Toda, Multiplicative structures inmod q cohomology theories I, Osaka J. Math., 2 (1965), 71-115.
  • [3] E.E. Floyd, Stiefel-Whitney numbers of quaternionic and related manifolds, Trans. Amer. Math. Soc,155(1971), 77-94.
  • [4] M.Imaoka and K. Morisugi, A note on characteristic numbers of MSp^ J. Math. Kyoto Univ., 19 (1979), 19-31.
  • [5] R.J. Milgram, Unstable Homotopy from the Stable Point of View, Lecture Notes in Math. 368,Springer-Verlag, 1974.
  • [6] R. Okita, On the MSp Hattori-Strong problem, Osaka J. Math., 13 (1976), 547-561.
  • [7] N. Ray, The symplectic bordism ring, Proc. Camb. Phil. Soc, 71 (1972), 271-282.
  • [8] N. Ray, The symplectic bordism ring, Some results in generalized homology, ^-theory and bordism, Proc. Camb. Phil. Soc, 71 (1972), 283-300.
  • [9] N. Ray, The symplectic bordism ring, Realizing symplectic bordism classes, Proc. Camb. Phil. Soc, 71 (1972), 301-305.
  • [10] E. Rees and E. Thomas, On the divisibility of certain Chern numbers, Quart. J. Math. Oxford Ser. (2), 28 (1977), 389-401.
  • [11] E. Rees and E. Thomas, Cobordism obstruction to deforming isolated singularities, Math. Ann., 232 (1978), 33-53.
  • [12] D. M. Segal, On the symplectic cobordism ring, Comm. Math. Helv., 45 (1970), 159- 169.
  • [13] D. M. Segal, Divisibility condition on characteristic numbers of stably symplectic manifold, Proc. Amer. Math. Soc, 27 (1971), 411-415.
  • [14] R. E. Strong, Some remarks on symplectic cobordism, Ann. of Math., 86 (1967), 425- 433.
  • [15] R. M. Switzer, Algebraic Topology- Homotopy and Homology, Speringer-Verlag, 1975.