Hiroshima Mathematical Journal

On the construction of spherical hyperfunctions on ${\bf R}\sp {p+q}$

Atsutaka Kowata

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 21, Number 2 (1991), 301-334.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206130969

Digital Object Identifier
doi:10.32917/hmj/1206130969

Mathematical Reviews number (MathSciNet)
MR1098820

Zentralblatt MATH identifier
0725.32008

Subjects
Primary: 35C15: Integral representations of solutions
Secondary: 32A45: Hyperfunctions [See also 46F15] 43A90: Spherical functions [See also 22E45, 22E46, 33C55] 46F15: Hyperfunctions, analytic functionals [See also 32A25, 32A45, 32C35, 58J15]

Citation

Kowata, Atsutaka. On the construction of spherical hyperfunctions on ${\bf R}\sp {p+q}$. Hiroshima Math. J. 21 (1991), no. 2, 301--334. doi:10.32917/hmj/1206130969. https://projecteuclid.org/euclid.hmj/1206130969


Export citation

References

  • [1] A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher transcendental functions, vol II. 1953. McGRAW-HILL Book Company, INC.
  • [2] A. Cerezo, Equations with constant coefficients invariant under a group of linear transformations, Trans. Amer. Math. Soc. 204 (1975), 267-298.
  • [3] L. Ehrenpreis, A fundamental principle for systems of linear differential equations with constant coefficients and some of its applications, Proc. Intern. Symp. on Linear Spaces, Jerusalem (1961), 161-174.
  • [4] J. Faraut, Distributions spheriques sur les espaces hyperboliques. J. Math. Pures et Appl. 58 (1979), 369-444.
  • [5] M. Hashizume, A. Kowata, K. Minemura, K. Okamoto, An integral representation of an eigenfunction of the Laplacian on the euclidean space, Hiroshima Math. J. 2 (1972), 535- 545.
  • [6] T. Kawai, Construction of local elementary solutions for linear partial differential operators with real analytic coefficients (I)--The case with real principal symbols--Publ. Res. Inst. Math. 7 (1971), 363-397.
  • [7] H. Komatsu, An introduction to the theory of hyperfunctions, Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math. 287, Springer-Verlag, Berlin and New York 1973.
  • [8] A. Kowata, K. Okamoto, Harmonic functions, and the Borel-Weil theorem, Math. J. 4 (1974), 89-97.
  • [9] P. D. Methee, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment. Math. Helv. 28 (1954), 225-269.
  • [10] G. de Rham, Solution elementaire d'operateurs differentiels du second ordre, Ann. Inst. Fourier (Grenoble) 8 (1958), 337-366.
  • [11] M. Sato, Theory of hyperfunctions, I, II, J. Fac. Sci. Univ. Tokyo 8 (1959), 139-193, 387- 437.
  • [12] M. Sato, T. Kawai and M. Kasiwara, Microfunctions and pseudo-differential equations, hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math. 287, Springer-Verlag, Berlin and New York 1973, 265-529.
  • [13] P. Shapira, Theorie des hyperfonctions, Lecture Notes in Math. 126, Springer-Verlag, Berlin and New York 1970.
  • [14] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.