Hiroshima Mathematical Journal

Dirichlet integral and energy of potentials on harmonic spaces with adjoint structure

Fumi-Yuki Maeda

Full-text: Open access

Article information

Hiroshima Math. J., Volume 18, Number 1 (1988), 1-14.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 31C25: Dirichlet spaces


Maeda, Fumi-Yuki. Dirichlet integral and energy of potentials on harmonic spaces with adjoint structure. Hiroshima Math. J. 18 (1988), no. 1, 1--14. doi:10.32917/hmj/1206129855. https://projecteuclid.org/euclid.hmj/1206129855

Export citation


  • [1] A. Boukricha, Das Picard-Prinzip und verwandte Fragen bei Storung von harmonischen Raumen, Math. Ann. 239 (1979), 247-270.
  • [2] C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, Springer-Verlag, Berlin etc., 1972.
  • [3] J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, New York etc., 1984.
  • [4] R. Gariepy and W. P. Ziemer, Thermal capacity and boundary regularity, J. Diff. Eq. 45 (1982), 374-388.
  • [5] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Springer-Verlag, Berlin etc., 1972.
  • [6] F-Y. Maeda, Dirichlet Integrals on Harmonic Spaces, Lecture Notes Math. 803, Springer-Verlag, Berlin etc., 1980.
  • [7] M. Pierre, Probleme devolution avec contraintes unilaterales et potentiels paraboliques, Comm. Partial Diff. Eq. 4 (1979), 1149-1197.
  • [8] M. Pierre, Parabolic capacity and Sobolev spaces, SIAM J. Math. Anal. 14 (1983), 522-533.
  • [9] U. Schirmeier, Konvergenzeigenschaften in harmonischen Raumen, Invent, math. 55 (1979), 71-95.
  • [10] N. A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation, Proc. London Math. Soc. 33 (1976), 251-298.